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Abstract

The problem considered is that of recovering digital information stored on a magnetic disc after the disc

has been erased. Even after erasure, the signal that represents the information is present on the disc,

though at a very reduced level. Communication theory techniques are applied to detect the erased signal

in the presence of noise. For this purpose, the signal and noise in the readback channel are characterized.

The signal dependent and nonstationary nature of particulate recording media is investigated. The

average power spectral density description is studied in detail, and its inadequacy in characterizing

media noise is discussed. It is indicated that media noise is completely characterized stochastically by its

autocorrelation function. A time-domain model for the noise is then proposed which makes it possible to

determine the autocorrelation function of the noise, for any general signal written on the disc, from a

simple set of spectrum analyzer measurements. The models for signal and noise are used to design

optimal and suboptimal detection bit detection schemes. The probabilities of bit error that result when

these schemes are employed are calculated numerically for four representative case studies. Conservative

estimates for the probability of detecting digital information from erased magnetic discs are obtained.
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Chapter 1

Introduction

Recovering digital information stored on a magnetic disc after the disc has been subjected to erasure is a

problem of interest in magnetic recording. A specific instance of this problem, which is the motivation

for the work discussed in this thesis, is the quantification of the security of information stored in the

discs, in terms of the probability of retrieving the information after they have been erased. Even after

the erasure, the signal that represents the information stored on the disc is present on the disc, though

at a very reduced level. Noise, which comes from various sources in the recording system, hinders the

accurate retrieval of the stored information, and more so when the disc has been erased. Based on the

statistics of the noise, detection schemes can be designed to recover the stored information. The goal of

this project is to predict the probability of recovering the erased data at various levels of erasure when

these schemes are used for detection. For the specific problem of interest we need to obtain conservative

estimates of ( or upper bounds on ) the probability of information retrieval. We have applied

communication theory techniques to the problem of detecting the erased signal in presence of noise. For

this purpose we consider the readback system as a communication channel over which the information

stored in the disc, is transmitted. The first part of this project concentrates on characterizing the

readback channel to the best possible extent. This characterization involves modeling the signal and

noise in the readback channel. The second part applies these models to estimate the probability of

accurate information retrieval.

1.1. Modeling the Signal

In digital magnetic recording, a m 1 m is represented by a transition in the direction of magnetization on

the disc, and a ~0~ is represented by the absence of such a transition. We consider that an inductive

head is used in the readback channel. Consequently, when a string of bits is stored on the disc, the

readback voltage at the output of the read head is a sequence of positive and negative going pulses

which we shall refer to as the signal. The presence of such a pulse within a clock period indicates a u I u,



and its absence indicates a J0u. The shape of an individual pulse, to a very good approximation, is a

Lorentzian [20]. We shall be using this Lorentzian pulse model in our analysis.

1.2. Noise Models

The sequence of pulses described in the last paragraph is not the only contribution to the readback

voltage. There is also an undesirable noise component. As a broad classification, we can consider that

the noise comes from two sources, the readback electronics and recording medium itself. The noise from

the readback electronics can be very accurately modeled as white noise, and is not difficult to

characterize. The noise from the recording medium, which we shall refer to as media noise, is more

interesting. We shall be concentrating only on particulate recording media in this thesis. The media

noise in this case arises due to the randomness in the locations and orientations of the magnetic particles

that constitute the medium. ~

Previous theoretical and experimental work [18, 1, 16] has shown that the noise from particulate

recording media consists of a signal independent background noise term and a signal dependent

modulation noise term. This signal dependence causes the media noise to be statistically nonstationary.

This nonstationarity nature is what makes the noise in magnetic recording systems different from the

noise in conventional communication channels. One of the ways to partially characterize the noise in the

stochastic sense is through the use of an average power spectral density description. In the past, models,

based on the physics of the recording process, have been developed [12, 18, 1] for the average power

spectrum of the noise when periodic signals are recorded on the disc. The emphasis in these models has

been to evolve an exact formulation for the average power spectrum in terms of the various parameters

associated with the recording system. Very little attempt has been made to characterize the noise for the

purposes of designing bit detection schemes based on the statistics of the noise. Since this is our goal we

have taken a different approach to characterize the noise.

With the assumption that the noise is zero-mean Ganssian, it can be completely characterized by its

two-dimensional autocorrelation function. We have proposed a model for the nonstationary media noise

in terms of two stationary stochastic processes and one deterministic function of time. The deterministic

function of time depends on the signal and it reflects the signal dependent nature of the media noise.

The autocorrelation functions of each of the component stationary stochastic processes are determined

from a set of spectrum analyzer measurements. These are then used to determine the two-dimensional

autocorrelation function of the non-stationary media noise when a general deterministic signal is written

on the medium.
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1.3. Bit Detection

The existing schemes for bit detection, i.e., deciding whether a particular bit in a bit string is a ~1~ or a

N0~, include level detection and peak detection. In level detection, if the readback voltage at the center

of the bit period is greater than a prespecified threshold we decide ~1N is present, and otherwise we

decide a ~0N is present. This scheme is simplistic and results in very high error rates. Peak detection is

an improvement over level detection; in this scheme the readback voltage is first differentiated, and then

the presence or absence of a pulse is established by detecting a zero crossing in the given bit period.

Both these schemes are ad hoc, in the sense that their design does not directly make use of the statistics

of the noise.

The detection schemes that we shall discuss in this thesis are more sophisticated; their design is based on

the stochastic characterization of the noise in terms of its au~ocorrelation function. We formulate the

detection problem as a hypothesis testing problem and evolve a decision strategy for the optimal

detector, i.e., the detector which yields the minimum probability of error. We also analyze the

performance of some subopt~.mal detectors which are easier to implement than the optimal detector. As

one would naturally expect the probability of error increases with the reduction in signal level that is

caused by erasure. We have computed the probability of error for all these detection schemes at various

levels of erasure. For the present problem of estimating the probability of erased signal retrieval, we { if

at all ) must err on the conservative side. Thus, we must consider the optimal bit detection schemes

yielding the highest bit detection probabilities even if it is impractical to implement these schemes.

These can, in turn, be used to predict the probability of correctly retrieving a long sequence of bits.

1.4. Prologue

The organization of this thesis is as follows. Chapter 2 provides an introduction to the readback

channel. A model for the signal pulse is derived in this chapter, and response of the channel to the

magnetization of a single particle in the medium is analyzed. Starting with this single particle response,

a model for the average power spectrum of the noise is developed in Chapter 3. Chapter 4 concerns the

time-domain model for particulate media noise, which allows us to obtain the two-dimensional

autocorrelation function of the media noise from simple spectrum analyzer measurements. The design

and performance evaluation of bit detection schemes which are based on the noise statistics is discussed

in Chapter 5. This chapter contains a major portion of the work done in this thesis. Conclusions and

suggestions for continuing work in this area are presented in Chapt.cr 6.



Chapter 2

The Readback Channel

2.1. Introduction

The use of magnetic recording has become widespread in the last two decades for numerous reasons. A

discussion of these reasons and an excellent introduction to the various aspects of magnetic recording

can be found in [12]. In all types of magnetic recorders, the information to be stored is applied as a

time-varying current in the coil of a gapped-write head; the time-varying fringing magnetic field,

emerging from the gap, magnetizes the magnetic medium which is moving past the head. The magnetic

materials used in magnetic recording have properties similar to those of permanent magnets, such as

high values of remanent magnetization and coercive force. Also the elementary particles that constitute

the medium must be physically small enough and magnetically sufficiently independent of one another

to permit short wavelength recording, and to give a high signal-to-noise ratio ( SNR ). There are two

types of magnetic media which satisfy these requirements; particulate dispersions and thin metallic

films. We shall be concentrating mainly on particulate recording media in this thesis.

In the specific application of interest to us, namely, longitudinal digital magnetic recording, the

magnetic medium is completely saturated parallel or antiparallel to the track direction. The most

popular scheme for storing binary digits on the medium is the NRZI ( non-return-to-zero-interleaved 

code in which a binary N I~ is represented by a transition in the direction of magnetization of the

medium in a prespecified bit period, and a ~0N is represented by the absence of such a transition . Fig.

2-1 shows a typical magnetization waveform that is obtained by using this code. The details of the

writing process, i.e. process of writing transitions on the medium, are not directly relevant to us in the

analysis of the readback channel, and hence not discussed in this report. A reasonably detailed analysis

of the writing process is available elsewhere [20]. It is shown that the written transition can be

approximated by an arctangent function. We shall use this arctangent transition model as the starting

point for our analysis.
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Figure 2-1: Magnetization waveform obtained by employing the NRZI coding scheme

2.2. Frequency Response of a Karlqvist Head

Fig. 2-2 shows the head-medium configuration of a typical digital magnetic recording system in which

an inductive head with gap thickness g, is used for readback. The medium shown is a particulate

recording medium with thickness ~ and width w. A particulate recording medium is a dispersion of

magnetic particles in a binder. Each of these particles can be considered as a tiny bar magnet oriented in

approximately the same direction as the track. The head moves with respect to the medium at a

constant velocity in the X-direction; and hence, in any analysis, we consider two coordinate systems, one

fixed to the medium and the other fLxed to the head. If ( zm, ym, zm ) are the coordinates of say point

in the medium with respect to the medium coordinate system, then the corresponding coordinates,

( zh’ Yh’ z~ ), with respect to the head coordinate system are given by

z~ ~ zm , (2.1)

where z ----- t~; v being the velocity of the head with respect to the medium.

To find the flux that links the read head when a certain magnetization pattern is written on the

medium, we make use of a powerful result which comes from an application of the Reciprocity Theorem



n turn head

medium

Figure ~-$: Head-medium Configuration

[20]. Let H(zh,yh,zh) be the fringing field produced by the resd head when it is excited by a current

which results in a deep gap flux of unity. Then, the by Reciprocity Theorem, the flux linking the the

read head due to the magnetization M(Xm,Ym,Zm) of the media is given 1,

oo M(=t~+~t’Yh’Zh) " H(=h’Yh’Zh) d~th dyh dzh ’

where ̄  denotes the dot product operation.

(2.2)

In general, M has all three components Mz, M~ and M~. On the other hand, if we ignore end effects in

the Z-direction, the head field H lies in the JCF-plane, and it does not depend on zh. Hence, we can

expand the dot product in Eq. (2.2) to get

1We shall be using c.g.s, unite in thi~ chapter



~0
w d~6

=

+ My(Xh+X,Yh,Zh) Hy(~h,Yh) }dxh dYh dzh̄

The readbaek voltage2 , V(x) at the output of the read head is given in terms of ~(x) 

where n is the number of turns in the readhead, ~d q is its efficiency.

Recognizing the integration over xh in Eq. (2.3) ~ a convolution, we c~ rewrite it 

(2.3)

+ 4~rfo w fd+~dd

where * denotes convolution.

[ %(x,Yh,Zh) * Hy(--X,yh) ] h dzh,

From the above equation it is evident that the response of the readhead can be considered as the output

of a linear system to which the magnetization, M(zm,Ym,Zm), is an input. Taking the Fourier transform

of ~b(x) with respect to the space variable z, we get

f~w+ 4~

where superscript * denotes complex conjugation, and

¯ Mit(k,Yh,Zh) .~t*(k,Yh) h dzh̄ (2.6)

£

2We shall be writing the readback voltage and flux as a function of either the space variable z or the time variable t, depending
on which is more convenient, keeping in mind that the z and t are related as z ~ yr.

9



~x(k’Yh’Zh) = oo Mz(X’Yh’Zh) e-jkz

"MY(k’Yh’Zh) = oo M~(x’Yh’Zh) e-Jkz 
(2.7)

From Eq. (2.4), we can see that the Fourier transform of V(x) is given by

~ (~) = y k., ~(~). (~.~)

Using the Karlqvist approximation [9], the fringing field produced by the head, when the deep gap field

is Hg, has components, ~ and/~y, given by

¯ h + g/2 ~ - g/2
~r Yh Yh

for Yh -> O. (2.9)

We mentioned earlier, when we applied the Reciprocity Theorem, that the field H(xh,Yh) is the fieldproduced by the read head when the deep gap flux is unity ,i.e., when Ha g ~ 1. Hence, by substituting

1/g for Ha in Eq. (2.10), we get

1 Xh + g/2 Xh --

Yh Yh

1 (Zh + g/2)2 + yh2-~
InIH.(~h,~~) = _ __2~-g (~h -- a/2)2 + 2 ’ for Yh >- O. (2.10)

It can be shown [20] that the Fourier transforms ( with respect to xh ) of the field functions in Eq. (2.10)

are given by,

sin(kg/2) e-I~l~h,
~zC~’~h) = (k~/2)

~(k,~h) = isgn(k) ~(~,~) for yh ~ O. (2.11)

I0



Using Eqs. (2.11) and (2.6), we can can calculate ~ (k) for any M(xm,yrn,Zm) writte n on the

medium. For particulate recording media, the magnetization is not a continuous function of x~n, Yrn and

zm, because the magnetic particles are discrete. The average response of the head to the magnetization

of all the particles that it scans at any instant is the same as its response to the average or bulk

magnetization of the medium as a function of ~:, because of the linearity property of the convolution in

Eq. (2.5). This average response shall be referred to as the Mgnal in forthcoming discussions. Random

variations of the response about the signal can be characterized if we know the response of the head due

to the magnetization of the individual particles. We shall analyze these two cases in the ensuing sections.

2.3. Bulk Magnetization Response

The bulk magnetization of the medium is in the direction of the track, i.e., in the X-direction, for

longitudinal recording. Therefore, My(xm,Ym,Zm} and Mz(xm,Ym,Zm} are zero. For a single positive goingarctangent transition written at xm -~- O, the bulk magnetization is given by

2M ¯~ tan_l( m ) (2.12)

where M~ is the saturation value of the magnetization in the medium, and a is the transition width

parameter.

Computing the Fourier tranform of the arctangent magnetization is not straightforward since the

integral of Itan-l(xm/a)l over the interval (-oo,oo) is not convergent. If we write

tan-l(~m/a ) -~- ~r/2 -- tan-l(alXm), (2.13)

then it can be argued that [20] the Fourier transform of Mr with respect to xm is given by

2M
 x(k) ----- 2 M, + -Ikla. (2.14)

The delta function in the above equation is misleading because it attributes a d.c. value to the

magnetization which, as defined in Eq. (2.12), does not have any d.c. value. We shall consider the delta

function as representing the divergence of the arctangent function. Since the voltage is proportional to

the derivative of the flux, this introduces a factor of k, which eliminates the delta function completely as

we shall see shortly.

Substituting Eqs. (2.11) and Eq. (2.14) in Eq. (2,6), 

11



si~ (k~/2)
(~12) [ ]

dyh

~ 4~rw
sin (kg/2) e-l~Id l_e-l~l~ 2M,

(~/2) I~I
[ 2M~,~aCk)- y-T- ~-I*)" ]. (2.15)

Finally, using Eq. (2.8),

sin (kg/2) ~-e-I~l~ -I~1"
(kg/2) e-I~ld I~1 ~ M~. (2.16)

The following terms can be identified in the above equations;

Writing Process Loss : e-t~l’~

sin (kg/2)
Gap Loss :

Spacing Loss : e-Ikld

X_~-Ikl~
Thickness Loss

All the loss terms tend to suppress the high frequency content of the magnetization waveform so thatthe flux waveform, for a transition written at xm -~- 0, is also a transition at x ----- 0 but with a larger

transition width. In fact, if we assume that the transition in the flux is also approximately arctangent in

shape, i.e.,

¢(x) = 2~b. tan-l( 
-~- ~), (2.17)

where Crn is the saturation value of the flux, then it can be shown [20] that ~ and a are related by

1
f = -~ V/g2 ÷ 4(d+a)(d+a+~). (2.18)

Note that, as expected, f ~ a for d ----- $ ----- g -~- 0, i.e., when the recording is distortion-free.

12



2.4. Signal Model

We can rewrite Eq. (2.17) in terms of the time variable t, by replacing ~ in the equation by vt. We shall

also include terms n r/ in the flux expression, so that the readback voltage would be simply the time-

derivative of the flux written in this way. Hence,

~(t)-~- ~2~m tan_l( -t ) (2.19)

where a --~ ~/v, and ~m ~ n ~ ~.

The readback voltage ~ a function of time for a single positive going ~ctangent tr~sition can now be

written ~

The above model, which can be identified as a Lorentzian pulse with width parameter a, will be used as

the model for the signal pulse in ensuing discussions. Note that in digital magnetic recording, we can

have both positive and negative going transitions. Both these represent a digital "I". Hence, the signal

pulse for digital = 1 = could be either positive going or negative going.

2.5. Response Due to a Single Particle

Let us now consider the response of the head due to a single particle ( ith ) which is represented by 

bar magnet m of finite length I and infinitesimal cross-section, located at coordinates ( zi, Yi’ zi ) in the

medium with orientation ( 0, ~ ) as shown in Fig. 2-2.

The particle makes an angle 0 with the X-axis. The angle 0 can take on values in the range [0,;r].The

projection of the particle on the YZ-plane makes an angle of ¢ with the Y-axis. The angle ¢ can take on

values in the range [0,2~r]. If the magnitude of the dipole moment of the particle is m0, then the

components of m in the three directions are given by

mz ~---m0 cos 0 ,

m~ ~-~ mosinOcos~,mz

~ m0sin0sin¢. (2.21)

The magnetization of the medium represents the dipole moment per unit volume of the medium. If we

13



consider the medium to be made up of only the ith particle, then we can write an expression for

M( xm,Ym,Zm)

where u{} denotes the unit step function.

The above expression for the magnetization is only a mathematical way of representing the fact that any

volume integral of M(xm,Yrn,Zm) containing the ith particle can be reduced to a line integral along the

direction of orientation of the particle. If s denotes the distance parameter along the particle direction,

then the following constraints hold for the line integral.

zm -~- ~cos~ + zi, ~
Vm ---~ ,sinScos~ + ~i’

zm ~ ,sinOsin~k + zi,

0 _< ¯ < t. (2.~3)

From Eq. (2.2) we get that the flux linking the read head due to magnetization of the i-th particle 

given by

dd oo M(Xm’Ym’Zm) " H(Xm--X’Ym’Zm) dxm aym dzm " (2.24)

Again, using the Karlqvist head fields

dd oo + ~(~,.,v,,,,~,,,) n~(x,.-.,v,.) )a~,,. m dzm

-- T =0 ( %co~ ~ ~( ~ cos a+x~-~,. ~in Ocos,+v; 

14



+ m0sin 0cos ~ H~( 8 cos 0+x,.-x, 8 sin ~¢os ~+Ui ) ~ d~,

where ~ ~nd ~ are given br Eq. 12.101.

Using the shifting property of the Fourier transform we get

(2.26)

where ~/z and ~/~ are given by Eq. (2.11). Hence,

Hence, the Fourier transform of the read back voltage due to the magnetization of the i-th particle is

given by,

This is the response due to a single particle. However, during readbaek, the readhead is influenced by

the magnetization of a very large number of individual particles, which could have arbitrary

orientations, positions and sizes. The response of the read head can hence be considered as a random

process whose mean value is the bulk response which we derived earlier. Variations of the response

about this mean value can be modeled as an additive noise. In the next chapter, we shall see how the

above expression for 3)i(k ) can be used to calculate the average power spectrum of this noise.

15



2.6. Summary

In this chapter we provided a fairly detailed analysis of the readback process with the objective of

studying the frequency response of the channel. We first considered the response of the channel to the

bulk magnetization of the channel and showed that the channel behaves as a cascade of loss factors,

namely, gap loss, spacing loss and distance loss. We then considered the response of the channel due to

a single particle in the medium. This will be used in the next chapter to calculate the average power

spectrum of media noise.



Chapter 3

Average Power Spectrum of Media Noise

3.1. Introduction

In Chapter 2, we mentioned that the fact that particulate recording media are made up of discrete

magnetic particles causes random deviations about the bulk or average response of the readback

channel. In order to quantify these deviations, which we shall refer to as media noise, we need to

characterize the noise stochastically. One of the ways to characterize the noise partially is through the

use of an average power spectral density description. We emphasize the word partially, because, as we

shall show in the next chapter, average power spectral densities yield a complete characterization only

when the noise has the special property of stationarity, i.e., the statistics of the noise are insensitive to

time shifts. It has been well established that particulate media noise is signal dependent and hence does

not possess the property of stationarity. The advantage of using a power spectrum description, however,

is that the power spectrum of the noise can be easily measured using a spectrum analyzer. Comparison

of experimentally observed average power spectra with those obtained from theoretical modeling can

yield a good insight into the nature of the noise.

Most of the existing models for the average power spectrum of the noise use the frequency response of

the head due to an individual particle as a starting point, and compute statistical averages of this

response to obtain the desired average power spectrum. One of the first papers that discusses such an

approach is by Mallinson [13]. He assumes that all particles are identical and have their orientations

perfectly aligned with track direction, so that the only randomness is in the sign of their magnetic

moments. Thurlings [18] has done a similar analysis without the assumption of perfect alignment of

particles and with clustering of the particles taken into account. Anzaloni and Barbosa [1] have extended

Thurlings’ analysis in an attempt to explain the dependence of the noise power spectrum on signal

frequency. Tarumi and Noro [17] have identified another contribution to media noise, namely, surface

asperities which cause random fluctuations in the head-to-medium distance. In this chapter we shall use



ideas from all these papers to arrive at a model for the average power spectrum of particulate media

noise.

3.2. A~ Simple Model for Particle Interactions

A particulate magnetic medium is a dispersion of elementary magnetic particles in a binder; the

position, shape, and orientation of the particles are random variables whose statistics are governed by

the manufacturing process. In the dispersion process, the particles do not distribute themselves

uniformly and independently; being magnetic, they interact with each other to form agglomerations.

The magnetic interaction of the particles in the medium is a complicated matter, requiring the

simultaneous consideration of all the particles in the medium.

head

medium
clusters

subclusters

equivalent particles

at high writing frequencies.

Figure ~-1= A simple model for particle interactions in terms of clusters and subclusters

In order to arrive at a simple model, we assume that the interactions are either very s~rong or

Fig. ~-1 is an attempt at representing these two types of interactions pictorially. Very strong

interactions cause the formation of ~ubclustera, which are sets of particles strongly interacting wit.h each
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other and weakly interacting with all other particles not belonging to the same subcluster. Since the sign

of the magnetic moment of the particles also depends on the applied external field, the final state of

magnetization of the particle depends on the applied field and on the attributes of other members of its

subcluster. For a slowly varying applied field, the magnetic moments of all the particles of a subcluster

are forced to have the same sign. However, when the signal frequency is high, strongly interacting

particles in a subcluster may end up with opposite polarization, canceling each other and thus reducing

the equivalent size and magnetic moment of the subcluster. Under these conditions we can consider the

subclnster to be an elementary particle whose size decreases as the signal frequency increases.

Weak interactions between subclusters, during the manufacturing process, cause them to form clusters.

The horizontal position of a subcluster within a cluster depends on other subclusters within its cluster,

but is independent of the subclusters not belonging to its cluster. We model the cth cluster by picking an
integer Nc from a given distribution and putting together N¢ subclusters. We shall assume that the

horizontal positions u of the centers of the clusters are uniformly distributed along the track. The

horizontal position w of the subclusters with respect to their respective cluster centers is drawn from a

distribution with probability density function p(w). Hence, the horizontal position x of the subclusters in

the medium is given by

The probability density function of x can be shown to be [14] the convolution of the density function of

u and the density function of w. The density function of u is uniform over the entire length of the tape

whereas the density function of w, p(w), is limited to the region of the cluster. The convolution of the

density function of u with that of w is hence also approximately uniform if we ignore the distortions at

the medium boundaries. Hence, the distribution of the horizontal positions x is approximately uniform.

Similarly, the distribution of the vertical positions y of the particles is also uniform.

3.3. A Model for the Average Power Spectrum of the Readback Voltage

The readback voltage can be considered as a random process r(t) whose mean value is the desired signal

s(t). The noise in the readback voltage n(t) is defined to be any random deviation from the signal 

that, by definition, n(t) is zero-mean. Hence, if we model the average power spectrum of r(t), we can

obtain a model for the average power spectrum of the noise from this by subtracting the average power

spectrum of 8(t). The average power spectrum of r(t) is defined by 
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~r(~) ~--- Jim ~ E{ I r(t) -~t dt ) (3.2)
T-*oo T

Eq. (3.2) is called the time average definition of the average power spectrum of a random process. In the

next chapter we shall be defining the average power spectrum in a different way in terms of the Fourier

transform of an average autocorrelation function. The reader may he familiar with either of these

definitions. We shall show in the next chapter that the two definitions are equivalent. We can rewrite

Eq. (3.2) in terms of space variables, using z--~vt and w~l~v, as

1
12~r(k) = Tli_.m~ ~vTE{ I ~Tr(x) -jl~ dx } (3.3)

h the limit ~ T ~ ~, we can replace the integral in Eq. (3.3) by the Fourier transform of r(x) to get

1
~(~) ~ lira ~E{ [p(k)12 (3.4)

T~

where p(k) is the Fourier tr~sform of a sample reMiz~tion of the random proce~

~ NT is the ~tM number of p~rticles (subclusters) in the volume of the medium from -vT to vT, then

=
i~1

where ~i(k) is the Fourier tr~sform of the voltage contribution due ~ one su~cl~ter ~ given in Eq.

We can rewrite Eq. (2.28) 

where 8i is the sign of the magnetic moment of the particle, 0 is now restricted to 0 _~ 0 _~ ~/2 and Hi

is given by

Therefore
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~--- lira E E s~slH~T-. oo 2~ E/ HI*
i----1 l~l

E{ si Sl Hi HI* eJk(zi-zI) } ] " (3.8)

Let the NT subclusters be distributed among clusters with Arc subclusters in cluster c. With the exception

of zi and ~i’ we assume that all the random variables associated with a single subcluster are statistically

independent. Furthermore, if we assume that the subclusters are statistically identical, then we can

write the above equation as

where

(3.10)

The sign of the magnetic moment of a subcluster will "follow" the magnetization written on the disc. In

other words, the probability of the sign being positive is larger at places where the written signal is

positive and vice versa. One of the ways of describing this dependence is through the use of the following

joint probability density function for the random variables s and x.

f(,,z) = ~!{1+ }~(a-1) + 4~T ~ ~ ~(~+I) (3.u)

Using the above joint density function, we compute A(k) for the following two cases.

Case 1 :

The subclusters i and l are located in different clusters; i.e., the random variables xi and xI are

independent. Then we can write



where

(3.12)

E{, e

Therefore

1 fvT 1VI(x) ~

8

1

2vT M8
(in the limit as T---, co ) 

ACk) 

The total number of such contributions to the double summation in Eq. (3.9) is given 

Next, we consider the case when the subclusters i and I are located in the same cluster.

Case 2 :

The subclusters i and I are located in the same cluster; i.e.,

and ~l ---~ u + wI.

(3.13)

Now, the random variables xi and x! are not statistically independent but u, wi and wI are independent.

Hence we can write the joint probability density function of 8i, 8l’ u, wi and wI in the following way.

f (*i,~l,U,Wg,wl) = f (~i,wi/u) f (ol,Wl/U) 

(3.15)

Therefore



Now, in the limit as T-, ~

and

(3.17)

~ M(u+wi-t-z) M(u÷wt) = M(z)*M(-z) --~ (3.18)du

where Rp(z) and Rdz) represent the autocorrelation functions of the deterministic functions p(z) and

M( z) respectively.

Hence,

A(k) R~(z) Rlcl(z) ejkz dz
2vT M 2

1
2vT M 2 [ ~r { R~(z) }* Y RM(Z) } ]* . (3.19)

But from Eqs. (3.17) and (3.18) we 

Y{Rp(~)} ---- I r{p(~)} 12 = S~(~),

’T{RM(z)} I .,~M(~)} 12---- I .~(~.

Therefore

(3.20)

A(~) = ~(k) ¯
M2

(3.2~)



The total number of such contributions to the double summation of Eq. (3.9) 

The total average power spectrum of r(t) is obtained by summing all the contributions of the type given

in (3.14) and of the type given in Eq. (3.21), and substituting in Eq. (3.4). 

1[lim Bo(k ) ~ N~ ÷ Bl(k ) 1
M2

Now we shall try and quantify the statistics of the clustering process. We shall assume that the

probability of having exactly N clusters in length L ( -~- 2vT ) of the medium is Poisson distributed with

Poisson parameter a, i.e.,

( aL)N aLp(N,L) ~ N---~. e- (3.24)

and

E{N} =Var{N} ----- a L. (3.25)

Hence we get the following.

where the overbars indicate average values of the quantities below.

The term

1
lira ~1 ~t (k)12

T,-~ oo

(3.26)
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represents the average power spectrum of the magnetization written on the medium, which we shall

denote by ~’M(k).

Substituting ]~q. (3.27) and Eq. (3.26) in Eq. (3.23), 

(3.28)

The third term in the RHS of Eq. (3.28) is the average power spectrum of the signal. The relationship

between this and the bulk magnetization response derived in Chapter 2 is not immediately obvious, but

will become more apparent when the expression for Bl(k ) is written out. The first term in the RHS of

Eq. (3.28) is the signal independent background noise. The second term, which arises due the

phenomenon of clustering, is the signal dependent modulation noise. We can analyze these terms in

more detail if we find Bo(k) and Bl(k) in terms of the statistics of the random variables associated wit~i

the particle.

Since we have assumed a uniform distribution for the vertical position Yi of a subcluster, we get

E{ ~-~1~1~i }
ad

~dy ~ c-21~1~
21kl~ (3.2~)

Also, we can simplify the expression for Hi in the following way.

c-lkltsin 0cos ¢ v/ktcos O _ 1 12 ( e-I~lhin ~cos ¢ cos {k/cos O} - 1 )2
I l = f

( e-lkl/sin ~¢os ¢ sin {k/cos

12

e-21kllsin ~eos ¢ _ 2e-lkl/sin ~cos ¢ cos {k/cos 0} ÷ 1

12

With the assumption that [k] ~ 1/l ; i.e., for frequencies much less than the particulate limit, we get

e-2[kllsin O¢os ¢ ~:~ 1 -- 2[k[/sin Ocos ¢ ÷ k2 l 2 sin 20 cos 2¢

2~-I~:l~sin ~cos ¢, ~=, 2( 1 - Iklt sin o cos ~, )

(3.30)
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cos(klcosO) ~ 1
cos 20

2

Therefore

e-]kl/sin 0cos ~ e/k/cos 8 _ 1
[

|
12 ~# kS[ cos20 q- sin20 cos2¢ ]. (3.32)

Using the above approximation and Eq. (3.29), we can now write expressions for B0(k) and Bl(k ) from

Eqs. {3.10) and {3.7) 

sin (kg/2) ]2 k2 e-21k[d (1-e-2[kl~)
B°(k) = "/to [ kg/2

’ 2[k[~ ’

where

A0 ~--- (4~r,~/)2too2 E{ cos 20 + sin 20 cos 2¢ } 

A1 ~--- (4~rn~/)2 rn02 [E{ x/cos 20 + sin 20 cos 2¢ } ]2 (3.34)

We observe that Bl(k ) has all the loss terms that we derived in Chapter 2 when we analyzed the signal

The term B0(k) has nearly the same functional dependence on k indicating that the background noise

has a power spectrum which is very nearly equal to the channel response. This means that the

background noise can be modeled as a white noise source which is added to the magnetization M(x) and

it gets modified by the readback channel in the same way as

We also observe that Bo(k) and Bl(k) depend on the value of the magnetic moment m0 of the subcluster.

As we mentioned earlier, rn0 decreases with increasing writing frequency, and, hence, Bo(k) and Bx(k)

are scaled down by the same amount with increasing writing frequency. This means that all the three

terms in the average power spectrum of the readback voltage get scaled down by the same amount with

increasing writing frequency; but the signal-to-noise ratio remains unaffected. We shall make use of this

fact when we model the noise in the time domain in the next chapter.
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3.4. Noise Average Power Spectrum

From Eq. (3.28) we can get the average power spectrum of media noise ~n(k) by subtracting the signal

power spectrum, i.e.,

As mentioned earlier there are two components in the noise power spectrum, background noise and

modulation noise. We shall now discuss both these terms in more detail.

3.4.1. Background Noise

The background noise as the name suggests is present even when there is no recorded signal. This nois~

can be best described as the output of the read head when the medium has been a.c. erased to ensure

that the bulk remanence in the medium is zero. Background noise arises purely from the fact that the

medium is made up of discrete particles, and would be present even if there was no clustering. As

mentioned earlier, this noise term can be considered as white noise which is "coloredN by the readback

channel. This is the type of noise that is encountered in most communication channels and a host of

communication theory results have been developed for signal detection and estimation in the presence of

such noise.

8.4.2. Modulation Noise

This noise term arises as a consequence of the clustering phenomenon. In fact, the term that

mmodulates~ the magnetization in Eq. (3.35) is directly related to the probability density function of the

position of a subcluster within a cluster. The simplest way to measure modulation noise is to record a

periodic magnetization pattern on the disc and to observe the average power spectrum of the readback

voltage around the fundamental frequency and harmonics of the periodic pattern. The modulation noise

appears as Nshouldersa around these frequencies.

It should be mentioned here that particle clustering is not the only reason for a modulation noise term.

Tarumi and Noro [17] have shown that asperities on the surface of the medium also cause a modulation

noise which has much smaller bandwidth than the modulation noise produced by clustering. In the next

chapter we shall attempt to obtain a general time-domain model which could be made to include both

these modulation noise terms.
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3.5. Summary

In this chapter we derived an expression for the average power spectrum of the readback voltage based

on a simple model for particle interactions within the particulate recording medium. This simple model

for particle interactions classified the interactions to he either very strong or weak. Weak interactions

cause the formation of clusters, and very strong interactions produce subclusters. We showed that

clustering of particles causes a modulation noise term which is signal dependent. Subclustering causes

the two noise terms and the signal to depend on the writing frequency. We noted that even though both

signal and noise depend on the writing frequency, the signal-to-noise ratio is independent of the writing

frequency.
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Chapter 4

Time-domain Model for Media Noise

4.1. Introduction

In Chapter 3 we established that the noise from particulate recording media consists of a signal

independent background noise term and a signal dependent modulation noise term. We made an attempt

at obtaining an exact formulation for the average power spectrum of the noise in terms of the variou~

parameters, both random and deterministic, associated with the recording system under consideration.

In the past such a characterization of the noise has been mainly used to calculate, in a very restricted

sense, the signal-to-noise ratios in these systems [13]; very little attempt has been made to characterize

the noise for the purposes of designing bit detection schemes in the presence of this noise. Our goal is to

evolve criteria for designing bit detection schemes based on the statistics of the noise. Hence, we need to

characterize the noise completely in the stochastic sense.

Media noise, observed as a function of time t at the output of the read head, can be considered as a

sample realization of a governing stochastic process. Typical media have about 1014 particles per cm3 so

that the read head scans some 106 particles every instant [12]. Since the noise is the combined effect of

the randomness in the location and orientation of such a large number of similar particles, by the

Central Limit Theorem [14], it is reasonable to assume that the governing process is Gaussian. This fact

has been further corroborated by experimental work done by Filar and Wright [8]. Recent work by

Barbosa and Anzaloni [2] demonstrates that we do not need to make the Gaussian assumption since the

N-th order probability density function of particulate media noise can be obtained from some simple

particle interaction models. However, the Gaussian assumption makes stochastic analysis tractable

because Gauasian random variables have very useful properties [14]. A host of communication theory

results have been derived using this assumption, and applied in many practical cases for which the

statistics is far from Gaussian. Since in our case we have strong reasons to support the fact that the

noise is Gaussian, we are more than justified in making this assumption.
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A Gaussian noise process n(t) is completely characterized stochastically by its mean function r~(t) and its

autocorrelation function Rn(t,t+r), defined by ,

rl(t) = E{ n(t) ) (4.1)

and

Rn(t,t+r ) --~ E{ [ n(t) - r/(t) ] [ n(t+r) o(t+r) ] 

where E{.} denotes expected value.

The noise process is said to be wide sense stationary if y(t) is constant for all t, and Rn(t,t+r ) does not

depend on t, i.e. , y(t) ~--- r/, and Rn(t,t+r ) ~-- Rn(r). It should be noted that for a Gaussian process,

wide sense stationarity implies stationarity in a strict sense [14], i.e., the N-th order statistics of the

process depends only on time differences. Hence, we shall be using the terms "stationarity" and "wide

sense stationarity" equivalently. The Fourier transform of Rn(r), denoted by Sn(W), is called the power

spectral density of the stationary stochastic process.

For a non-stationary Ganssian process with constant mean, an example of which is media noise which

has zero mean, the autocorrelation function Rn{t,t+r ) is not independent of t. In this case, we define the

average autocorrelation function of the non-stationary process as [14]

~n(r) = lira fT /2 R~ (t,t÷r) dr (4.3)
T--, o~ ~ J-T/2

The Fourier transform or ~(r), denoted by ~n(w), is called average power spectral dens ity of t he

process3 . We can obtain ~n(r} from measurements of ~n(w) using the inverse Fourier transform.

However, in general, measurements of ~n(w) cannot be used to obtain the autocorrelation function

Ra(t,t+r ) which is needed to completely characterize a non-stationary Gaussian stochastic process.

Hence, the adequacy of the average power spectrum derived in Chapter 3 in characterizing media noise

is questionable.

Here, a time-domain model for the noise, which expresses the non-stationary noise process in terms of

two stationary stochastic processes and a deterministic function of time, is presented. The deterministic

function of time depends on the signal and it reflects the signal dependent nature of the media noise.

3See the Appendix section st the end of this chapter for details
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The autocorrelation functions of each of the component stationary stochastic processes are determined

from a set of spectrum analyzer measurements. These are then used to determine the autocorrelation

function of the non-stationary media noise when a general deterministic signal is written on the medium.

4.2. Time-domain model for media noise

We model the non-stationary media noise n(t), as seen at the output of a readback channel in which an

inductive head is used, as follows :

d
n(t) = ~’~ { nl(t ) ~b(t) } no(t), (4.4)

where ¢(t) is related to the readback signal s(t) 

d O(t)s(t) = d’--~ (4.5)

The function ~b(t) is directly proportional to the net flux linking the read head, unless equalization 

used in the readback channel. The terms nl(t ) and n0(t ) are assumed to be zero-mean stationary

Gaussian stochastic processes. We also assume that nl(t ) and n0(t ) are independent, so that expected

values of the cross products of nl(t ) and n0(t) are zero. With these assumptions, if Rnl(r) and Rn0(r) are

respectively the autocorrelation functions of nl(t ) and no(t), we can express the autocorrelation function

Rn(t,t+r) of n(t) in terms of these as follows.

Rn(t,t+r ) = E{ n(t+r) n(t) 

d d
= E{ [ n~(t+r)d-~t(t+r) ¢( t+r)~nx(t+r } + no(t+r } ]

d d
[ nx(t)~-iCt (t) + ¢(t)~x(t) + 

d d d d
-~ E{ nl{t+r ) nl(t ) } ~(t+r} d---ft (t } + E{ nl(t} d--~nl(t+r) }~b(t+r)

d d d d
+ E{ n~(t+r) ~-~nx(t) } ¢(t) d--~t(t+r) + E{ -~nx(t+r) ~nx(t) } ¢(t+r)

+ E{ n0(t+~) n0(t) 

Now, since nl(t ) and no(t} are stationary processes

E{ nl(t+r ) nl(t ) } ---~ Rnl(r) 



Also from results given in [14] for derivates of stationary processes, we have the following.

d d

d d d
E{ ~nl(t+r ) nl(t ) } ~--- Rnlnl~(-r ) ~ -- "~r Rnl(-r) ~ d’-~ R~l(r) 

d d d d~
E{ ~nl(t ) ~-~nl(t+r ) } = "~rRnl,nl,(r) ~--- ~-~Rnl(r). (4.8)

Substituting Eqs. (4.7) and (4.8) in Eq. (4.6), and using Eq. (4.5) 

d d d d
Rn(t,t+r) = d---¢t (t+r) d----Ct (t) Rnl(r} + q/(t+r} d---¢t (t) d.-rRnl(r)

d d d2
- ¢(t) d----Ct (t+r } ~-rRnl(r) - ¢(t+r) ~b(t) ~--~Rnl(r) + Rn0(r)

where superscript t stands for differentiation with respect to r.

The average autocorrelation of n(t) can be obtained from Rn(t,t+r ) as follows.

(4

1 fT/2
~n(r) = lim

T~ oo ~I" J-T/2 Rn(t’t+r) 

1 fT/2

d 1 fT/2
+ ~’rRnl(~’) Tli--,In~ ’~ J-T/2 ~b(t+r) s(t) 

lim ~b(t) s(t+r) dt

d2 1 fT/2
lira ~b(t) ~b(t+r) dt+ (r). (4.10)-- ~r 2 Rnl(r) r~o a- T/2   Rno

If U¢(w) denotes the average power spectrum of ~b(t), then we get the following equations in the limit 
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If ~¢(w) denotes the average power spectrum of ~b(t), then we get the following equations in the limit 

T tends to infinity. Here Y’{} denotes the Fourier transform with respect to r of the quantity within the

brackets.

1 fT/2 1 1
12Y’{ lira g~(t) @(t+r) } - --~ lir a 4~*(w) ~--- lira I ~(~)

Let ~nl(W) and S~0(w) denote respectively the power spectral densities of nl(t ) and ,0(t). Then we get

the following set of results from well known properties of Fourier transforms of derivatives.

From Eqs. (4.10), (4.11) and (4.12), and by making use of the fact that the Fourier transform 

product of functions is the convolution of the Fourier transforms of the functions, we get an expression

for the average power spectral density ~n(w) of n(t) as follows.
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The transition from the second line to the third line in the above equation may not be obvious to the

reader. We have provided the details of this transition in the Appendix section at the end of this

chapter.

We shall show in the next section that the average power spectral density of Eq. (4.13) is consistent with

spectrum analyzer measurements of the noise power spectrum for specific signals. The agreement of Eq.

(4.13) with experimentally observed power spectra coupled with a close look at the physics of the

readback process provides a theoretical basis for the model in Eq. (4.4).

If we compare the average power spectral density of Eq. (4.13) with the average power spectral densit~

of the noise derived in Chapter 3 ( Eq. (3.35)) we find that they are very similar. For the purposes 

making a comparison we shall rewrite Eq. (3.35).

Comparing Eqs. (4.13) and (4.14), we see that the first term on the RHS of Eq. (4.13) represents

modulation noise ~d the second term represents background noise. We note that the modulation noise

term, i.e., the convolution of ~(~) with ~¢(~), ~ises due ~ the multiplication in the tim~domain 

stationary noise proce~ nl(t ) with the fl~ ~(t). ~ the ensuing discussion we shall show that the choice

of this multiplicative noise model for modulation noise w~ not made ~bitrarily.

In Chapter 3 we saw that the phenomenon of clustering w~ one of the ways of expl~ning the

mod~ation noise term in the noise average power spectrum. ~ we follow the steps taken to go from Eq.

(4.4) ~ Eq. (4.13), it is e~ily seen that a tim~domain ( or spac~domain ) model for the noise 

produces the convolution term ~)* ~(k) of Eq. (4.14) would involve the multiplication of 

magnetization waveform with a station~y noise proce~ which represents clustering. This multiplicetive

noise term then p~ses through the readback ch~nel, represented by ~l(k), and ge~ affected by the loss

terms and the differentiation of the read head just ~ the signal does.

Now, the model for modulation noise described in the above paragraph is more re~onable than the
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model of Eq. (4.4), but obtaining the parameters of the model is going to be very difficult because 

would need to calculate Bl(k ) which requires a characterization of the various random and deterministic

variables that are associated with the recording system. Also, when bit detection is done, what is

available at the input of the detector is the readback voltage and not the magnetization. A model which

expresses the signal dependent noise in terms of easily available quantities is hence more useful in

designing optimal bit detection schemes.

The approximation that we have made in the model of Eq. (4.4) is that the signal dependent noise

multiplies the flux and not the magnetization. The approximation is much better if equalization is used

in the readback channel, because the flux waveform would then have approximately the same shape as

the magnetization written on the medium [20]. The flux as defined in Eq. (4.5) is easily obtained from

the readback signal by integration. The process of integration does not, however, yield the d.c. value of

the flux. But this should not pose much of a problem because, as we shall see in the next chapter, the

d.c. value of the flux is usually known beforehand.

4.3. Experimentation

The functions S~l(w) and S~0(w) were obtained with an I-IP8568B spectrum analyzer on a recording

system using a 750 Oe, 0.75 ~m thick particulate disk and a MnZn-ferrite recording head with a 0.375

~m gap length. Sn0(w) was measured by amplifying the readback voltage from an AC erased disk. It is

noted that this background noise also includes noise from disk imperfections, and non-media noise such

as head noise and instrumentation noise. The resulting S~0(w) is shown in Fig. 4-1.

The signal dependent modulation noise term shows up as a convolution of the average power spectrum

of the flux ~(w) with ~l(W) in Eq. (4.13). When a periodic signal is written on the disc, ~¢(w) 

of delta functions at the fundamental frequency and the harmonics of the signal. The convolution of

Snl(W) with these delta functions results in shifted versions of S~l(w) around these delta functions scaled
by the average power in ~b(t) at the corresponding frequencies. Hence, to measure S~l(W), square 

signals were written on the disc at frequencies greater than the bandwidth of Snl(W). Saturation

recording was used so that the flux ~b(t) in all these cases had the same amplitude. Fig. 4-2(a) shows 

string of pulses measured at the output of the read head when a square wave is written on the disc at a

frequency of 1 MHz. Fig. 4-2(b) shows the corresponding ¢(t) obtained after integration and 

correction. The saturation value of the flux can be obtained from this plot.

Curves (a)-(c) in Fig. 4-3 show plots of these modulation noise power spectra measured in a bandwidth
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of 1.0 ]~l~Iz around the fundamental frequencies of three square waves, written at 500 kHz, 1.0 Mtiz, and

1.5 IV[Hr. Since the power contained in the fundamental frequency of ~(t) in all these cases is the same,

the difference in the modulation noise term w2 { ~#(w) * Snl(w) J around the three center frequencies

should be due to the multiplication by w2. In order to verify this, we performed a division by w2 in all

the plots. The resulting plots of ~#(w) * S~l(w), which are simply scaled versions of ~nl(w), are shown 

Fig. 4-4, curves (a)-(c). As expected there is considerable similarity in these plots.

It is well known that d.c. erased noise is larger than a.c. erased noise in particulate media [18]. This

increase can be explained by our noise model as a modulation noise around w ~- 0. To verify this, we

saturated the disc using a large d.c. erase field and measured the modulation noise power spectrum up to

a frequency of 500 KHz ( see Fig. 4-3, curve (d)). Fig. 4-4, curve (d) is a plot of the power spectrum

after division by ~2. The 3 dB difference between Fig. 4-4, curve (d) and Fig. 4-4, curves (a)-(c) 

explained by the fact that the d.c. modulation noise shoulder is one-sided.

It should be noted that measurement of modulation noise cannot be performed independently of the

background noise. Hence, to obtain the average power spectrum of the modulation noise alone, the

background noise power spectrum has to be subtracted from the total measured power spectrum. Also,

the signal spikes and the very narrow band modulation around them, which is due to fluctuations in disc

velocity , must be suppressed. This subtraction was done to obtain all the modulation noise power

spectra.

We computed ~1(¢o) from the data that is plotted in Fig. 4-4. The autocorrelation functions Rnl(r } and

R~o(r) are computed from S~l(w) and S~o(W) using the inverse Fourier transform. Plots of Rnl(r ) and

R~0(r) are shown in Figs. 4-5(a) and 4-5{b), respectively. We observe that both Rnl(r) and ) look

very much like sinc functions, indicating the band limited nature of these noise terms. We can see that

R~0(r) has a very small width in the time domain

{ ~ 0.1 ~u-sec ), indicating that it has a large bandwidth. The modulation noise term, however, has 

much larger width in the time domain ( ~ 0.05 m-sec ), which indicates its small bandwidth in the

frequency domain.

From R~l(r } and Rn0(r), we can obtain the desired autocorrelation function Rn(t,t÷r} for any general

magnetization pattern written on the disc. In the next chapter we shall see how we can make use of this

autocorrelation function in designing optimal bit detection schemes.
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4.4. Discussion and Conclusions

Most of the existing theoretical and experimental work regarding particulate media noise has dealt only

with its average power spectrum. The emphasis in the past has been to come up with an exact

formulation of the average power spectrum of the noise in terms of the various parameters associated

with the recording system. The model that we have presented in this chapter has parameters which can

be obtained from simple set of experiments, and it is general in the sense that it can be made to include

any noise terms which are similar in nature to the background noise and modulation noise of the media

noise. For example, the modulation noise due to clustering and that due to surface asperities can now be

treated on the same footing.

Since average power spectrum measurements cannot be used directly to obtain the autocorrelation

function of particulate media noise, Tang [16] suggested the use of time-domain measurements to obtain

the desired autocorrelation function. These time-domain measurements are far more complicated than

the spectrum analyzer measurements and are prone to timing errors. The main point made in this

chapter is that we can in fact use spectrum analyzer measurements to obtain the autocorrelation

function of media noise. Also, unlike Tang’s time-domain method which can only be used to determine

the noise autocorrelation function for a specific signal, R~l(r) and Rn0(r) as presented in our model can

be used to deduce the noise autocorrelation function for any general signal written on the disc.

It should be noted that this simple noise model does not explain some of the observed features such as

the decrease in total noise power with increase in writing frequency in case of particulate recording

media. But as we mentioned in Chapter 3, both the signal as well as noise terms are affected in the same

way when the writing frequency increases, maintaining the same signal-to-noise ratio. We shall see in the

next chapter that in the design of optimal bit detection schemes, it is not the absolute values of the

signal power and the noise power that are important but rather the ratio of these two. Hence, we are

justified in using the model as a useful tool in designing optimal detection schemes for recorded digital

signals in the presence of media noise.
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4.5. Appendix

4.5.1. Det~|ls of the derivation of Eq. (4.13)

Consider the following example.

The function z(t) is obtained from two other functions x(t) and y(t) by taking the second derivative 

the product of x(t) and y(t). We can express z(t) 

d2
z(t) = -- { z(t) y(t) (4.15)

dt2

By expanding the second derivative in the above equation, we get

d2 d d d2
z(t) [ 2

Using well known properties of Fourier transforms, we can express the Fourier transform of z(t) in two

ways.

From Eq. (4.15), we get

Z(CO) = -- 2 {X(co) * Y(co) }, (4.17)

where Z(co), X(co) and Y(co) denote, respectively, the Fourier transforms z(t ), ~(t and y(t).

From Eq. (4.16), we get

Z(co) ~-~ -- 2x(co)*y(co)} -- 2(wX(co)}* (co ]~w)} -- X(c o)* {co 2]’(co)}. (4.

Equating the RHS of Eqs. (4.17) and (4.18) gives us the following equation which should explain 

transition from line two to line three in Eq. (4.13).

w2 {X(w) * Y(CO)} = {co2 X(CO) * ]’(co)} + 2 {co X(w)} ¯ {w ]’(co)} + X(co) ¯ {cos ],(co)} 
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4.~.2. The Average P0we~ ~pee~um Defm|t|on

~onsider a random process ~(t~ wi~h autoco~elx~ion function /~(t,t÷~’~. ~s in Eq. ~4.3~, we d~fine ~h~

average autocorrelation function of z(t) 

7~z(r)-~r-~colim ~-~ dt . (4.20)

The Fourier transform of ~z(z), denoted by ~’z(~), is called the average power spectral density of z(t).

We shall now show that ~z(w) does represent the average power contained in z(t) as a function 

frequency.

Pz.oof :

If z(t) is passed through a linear system with transfer function H(~), then the average power spectrum

of of the output ~(t) is related to the average power spectrum of ~(t) as 

~(~)-----[H(~)]2~z(~). (4.21)

We choose the linear system to be a very narrow band filter around a particular frequency w0. In

particular, we choose H(~) such that

I<"-<"ol < (4.22)
otherwise

Now, the total average power in ~(t) is given 

lim {y2(t)} dt -~- lim ~(t,t) 
T-,co T-.co T

-~-- ~(0) ~-~ ~ co ~(w)d~

1_
~ ~ S(w0) (4.23)

We can make the narrow band filter as narrow as we wish, and by doing so we can extract the average

power of z(t) at 0. This i mplies t hat ~(w) i s i ndeed the average power spectral d ensity o f t he random
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process z(t). This definition of the average power spectral density as the Fourier transform of ~(r) is the

so called ensemble average definition. When measurements are made in practical systems what is

norma1|y available to us is only one sample realization of the random process z(t). In this case we obtain

an estimate of the average power spectrum of z(t) 

~w) ~- -~ [ (t) -j~t dt (4.24)

We shall show that the above estimate for the average power spectrum is unbiased in the limit as

T --* oo, i.e., that

lira /~(~’~(w) } ~-- ~z(w) (4.25)

We proceed as follows

Therefore,

lim E{ ~r~(w) ) ffi lira t~(t,u)e -j~(u-t) du dt (4.27)
T-,v~ T.--, oo ~’~ T

Also from the ensemble average dei~mition of ~z(0~), we get

-~- " l~t,t+r) dte-~r dr

±f-~- ~m
Jrt(t,t+r) -j~r dr dt~r--, oo 2T Jtffi-~rJrffi-oo
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R(t,u) -’~(u-t) du dt . (4.28)= lim ~ -r

Comparing Eq. (4.26) and Eq. (4.28), we see that in the limit as T --* ~ they are equal, i.e.,

1
]_ x(t) -j~t dt 12 } . (4.29)

The above equation is the definition for the average power spectral density that we used in Eq. (3.2) 

Chapter 3. Now, even though the time average estimate for the average power spectrum in unbiased, it

is not consistent, i.e., the variance of the estimate does not tend to zero in the limit as T --~ ~. In fact

we can easily show that

lira Var{ ~’/(w) } ~--- [ ~(w) (4.30)

Most spectrum analyzers estimate the average power spectrum of a random process by computing

For stationary processes we could reduce the variance of this estimate by splitting the time interval into

nonoverlapping intervals and averaging over the estimates obtained in each interval. For a

nonstationary process, however, we cannot do this, because in this case the nonoverlapping intervals can

have entirely different statistics. Hence, in order to reduce the variance of the estimate we need to

artificially introduce eyelostationarity or periodicity into the random process. This is essentially the

reason for considering periodic written bit sequences when we measure the average power spectral

density of media noise.
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Chapter 5

Bit Detection Schemes For
Erased Signals in Noise

5.1. Introduction

In Chapter 2 we developed an approximate model for the signal pulse that represents a digital m 1"; the

approximation made was that the corresponding flux waveform has an arctangent shape. In this chapter,

we shall extend the signal model and flux model to include the case of d.c. and a.c. erased signals. Also,

in Chapter 4 we developed a general time-domain model for particulate media noise which allowed us to

express its two-dimensional autocorrelation function in terms of the one-dimensional autocorrelation

functions of two stationary processes. We shall approximate the one-dimensional autocorrelation

functions by reasonable analytic functions in this chapter.

Using these models for signal and noise, we can analyze the performance of various bit detection

schemes, both optimal and sub-optimal, which can be used to detect the signal pulse in the presence of

noise. The criterion that will be used to compare these detection schemes is the probability of bit error (

or the bit error rate ) that results when these schemes are employed. The bit error rate for a given

detection scheme increases with the level of erasure. This dependence will be studied for both a.c. and

d.c. erasure.

In order to facilitate the calculation of the error probability we use a discrete-time version of the

readback voltage for analysis. The readback voltage in a given bit period is discretized into N samples

which form a vector r. The Lorentzian pulse which represents a digital = 1 m is discretized into N samples

that form a vector s. This pulse could be either a positive-going pulse or a negative going pulse as we

saw in Chapter 2. We shall be assuming that we know the sign of the pulse beforehand. This assumption

has certain implications, when we consider estimation of a sequence of bits using a bit-by-bit detection,

which we shall discuss in the next chapter. The two-dimensional autocorrelation function of the noise is

discretized to form an NX N matrix called the covariance matrix.
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We ~h~ll eon~id~ f6ur l~i~ detection schemes in this chapter. The first of these is the optimal bit

detection scheme, i.e., the scheme which yields the lowest bit error rate. We shall show that this

detection scheme is quadratic, and hence difficult to implement. Next, we shall assume that the detector

is linear and find the best linear detection scheme. Then we shM1 consider a very simple linear detection

scheme called the Correlator. All of the above detection schemes assume a knowledge of the exact nature

of the signal and statistics of the noise, and are hence referred to as parametric detection schemes.

Nonparametric detection schemes, on the other hand, require only a partial knowledge of the signal

shape and noise statistics. We shall consider one such nonparametric scheme called the Sign Detector.

For the three parametric detection schemes, we shall obtain analytical expressiops for the error

probability which can be evaluated numerically on a computer for specific test cases. This will serve to

compare the performance of these detection schemes. For the sign detector, however, it is very difficult

to obtain an analytical solution for the error probability, and we have not attempted to obtain one.

Hence, only the detection strategy has been presented in this case.

5.2. Analytical Models for Signal and Noise

5.2.1. A Model for the Erased Signal

We shall assume that erasing the medium causes only the amplitude of the signal to decrease, while

maintaining the shape ( equivalently the frequency content ) of the signal. This is an approximation

because in most practical systems erasure causes some distortion in the signal shape. Also, in deriving

the arctangent model for the flux in Chapter 2, Eq. (2.19), we assumed that the recording was done 

saturation so that the d.c. value of the flux was zero. This condition of zero d.c. value is not valid

under conditions of d.c. erasure. Hence, we generalize Eq. (2.19) as follows.

2q~m t T T= tan-1 ( + Cdc , -- < t < , (5.1)

where ~bm is the saturation value of the flux, q is a dimensionless quantity representing the level of

erasure, T is the bit period, pT is the transition width parameter, and ~bdc is the d.c. value of the flux.

The quantity p is dimensionless and it represents the normalized transition width parameter, the

normalization being done with respect to T. The quantity q can take on values in the range [0,1]; q -~-- 1

represents no erasure, and q ~ 0 represents complete erasure.

Under conditions of a.c. erasure, the flux does not have a d.c. component. This condition is described in

Fig 5-1. In this case, we can write the flux as
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2q~rn t ) 
~ae(t) = --~ tan-1 ( ~-~

T T--< t <-.
2 -- 2

Under conditions of d.c. erasure, ¢(t) is saturated at either +~bm or -¢bm. The d.c. value of ¢(t) in this

case is determined by both Cm and the level of erasure q as is shown in Figs. 5-2(a) and 5-2(b). Hence,

we get

t T T
_ - -- < t <-. (5.3)+ 1 + q ,

2 -- 2

The readback signal in both c~ses is given by the familiar Lorentzian pulse shape, shown in Fig. 5-3,

which can be written as

[ ]
Td 2qCm 1 T< t <-.s(t) = .~ t) -- ~ ~r pT l+ t2/p2T ~ ’

- "~ -- 2

If we normalize the flux with respect to ~bm and the time variable t with respect to T, then we can

rewrite Eq. (5.1) in terms of only dimensionless variables4 as

1 1
--- < t <-. (5.5)~bde ’ 2- 2

We also get the following equations as a result of this normalization.

%(0 :q t 1 x
= --tan-l( --- < t <-. (5.6)

r ~ ’ 2 -- 2

~dc (t) 2q
t 1 1

= --~r tan-l(~ ) - + 1 +- q ’ ---2 -- <
t <-.2 (5.7)

d 2qr 1 1 1
--- < t <-. (5.S)

2 -- 2

Eqs. (5.6) to (5.8), which are expressed in terms of only normalized variables, will be used in 

numerical computations of bit error rates.

4Strictly speaking all the normalized quantities which we shall be introducing in this section should be represented by different
symbols from those we have used for the unnormalized quantities. The fact that we have not done so should not confuse the
reader.
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5.2.2. Noise Model

To characterize the noise we use the time-domain model that we proposed in Chapter 4, i.e.,

d
n(t) = ~ { "1(0 ~(t) } + (5.9)

As discussed in Chapter 4, the autoeorrelation function of n(t) can be obtained from the autoeorrelation

functions of the background noise, no(t), and the modulation noise, nl(t), 

Rn(t,t+r ) ~-- Rnl(r) ,(t) ,(t+r) Rnlt(r ) ~b(t+r)

- R.[(,) ~(t) ,(t+,) R.~"(,) ~(~(t+,) + R.o), (5.10)

where superscript t stands for differentiation with respect to r.

In order to simplify the analysis we shall assume that both the modulation noise as well as th~

background noise terms are band-limited white. If/31 and B0 are, respectively, the bandwidths of the

modulation noise and background noise ( 0 : ~ B1 ), t hen their p ower spectral d ensities c an be written

otherwise

n0(w) = ~ otherwise
(5.11)

From Eq. (5.11), we can compute the autoeorrelation functions Rnl(r ) and Rn0(r) by using the inverse

Fourier transform to get

Rnl(r) 2~r si n (2 rBlr) ,

No
R"0(r) = 2~r---~ sin (2~rB0r).

(5.12)

If we set

fl = B1T and fo = BoT’ (5.13)

where fl and fo represent normalized bandwidths, then
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Rn0(r) = -=~ sine( 2f0 ~), (5.14)

where the function sine(.) is defined 

sin
sinc(x) -~- (5.15)

By definition, Rnl(r ) is dimensionless, and Rn0(r) has the units of square-volts. Hence, in order to

normalize all the variables in Eq. (5.14), we normalize r to T and Rao to ~bm2/~I¢. This procedure for

normalizing the autocorrelation functions is consistent with the normalization of Eq. (5.5). After

normalization we obtain

Rnl(r) ~ ~-- sincC2flr) = r I sincC2flr) 

N0Y0v
Ro(r) = q~rn2 sinc(2f0r) ----- 0 sinc(2f0r)  (5.16)

where r0 and r1 are dimensionless variables representing, in some sense, the noise-to-signal ratios of the

background and modulation noise respectively compared with the peak power in the unerased signal.

In order to compute I~a(t,r ) using Eq. (5.10), we need the first and second derivatives of ~nl(r ). We

compute these as follows.

r1 r1
~_~ -- cos(2~rflr ) -- -- sinc(2flr) . (5.17)

d rl c°s (2~flr) d rlsin(2~rflr)
e.l"(,- ) = g { ~ } - g ( 2~fl J }

2r1 2r1

"~- "fi "sinc(2flr) -- 7 c°s(2~flr) -- rl(2~rfl)2 sinc(2flr) 
(5.1s)

We mentioned earlier that we would be using a discrete-time version of the readback voltage for the

detection problem, which would require the use a matrix called the covariance matrix to describe the
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two-dimensional autocorrelatlon function of the noise. Let us choose the N elements of the vector r

representing the feedback voltage as

r i ~ r(tl), 1 _< i _< g. (5.19)

where

T T
t i = -~ + (i-1) N_l (5.20)

The above definition for the elements of the read back voltage vector implies that the signal pulse

representing a digital = 1" should be discretized to form a vector s whose N elements are given by

(5.21)

The corresponding noise covariance matrix is obtained from Eq. (5.10) by choosing the (i,3)th element of

the covariance matrix E as

Eij ~- Rn(ti,tj), 1 <_ i <_ N, 1 <_ j <_ N. (5.22)

It is important to note here that the noise covariance matrix as defined above is going to be different for

a recorded "1= and a recorded =0". In fact if we denote these two matrices by E1 and G0 respectively,

then the (i,j)th elements of these matrices are given 

for a.c. erasure,

for d.c. erasure,

1 _< i ~< N, 1 _< j _< N. (5.23)

From the above equations it follows that E0 and ,U1 are symmetric matrices. Furthermore, E0 is a

Toeplitz matrix, i.e., a matrix which has equal values on each of its diagonals. The covariance matrix E1

depends on the signal and hence changes with level of erasure. It can be seen that if we reduce the signal

level to zero both matrices will be equal, as expected.
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5.3. Bit Detection as a Hypothesis Testing Problem

The problem of detecting the signal pulse that represents a u 1", in a given bit period, in the presence of

noise can be viewed as a hypothesis testing problem. The two hypotheses under consideration are HI (

signal present ) and ~0 ( signal absent ). Since we are dealing with a discrete-time version of 

problem, the readback voltage in a given bit period is discretized into N samples which form the vector

r. If there was no noise, r would equal s under hypothesis HI, and equal 0 under hypothesis N0" In this

case we would not have any problem deciding whether a ~1u or a ~0" is written in a given bit period.

Now, if we add noise to the readback voltage, there is a possibility that a ~1~ might be interpreted as

m0" or vice-versa. This constitutes an error in detection. Intuition would have it that increasing the

power in the noise with respect to the signal power would increase the probability of error. The goal of

hypothesis testing is to evolve a scheme based on the statistics of the noise which would minimize this

error.

We mentioned in Chapter 4 that a Ganssian random process is completely characterized in the

stochastic sense by its mean function and its autocorrelation function. The discrete time equivalent of

this statement is that a Gaussian random vector is completely characterized by its mean vector and its

covariance matrix. The random vector r has different statistics under each of the hypotheses. If P0 and

Pl represent the mean vectors of r under the two hypotheses, and zU0 and ~I are the corresponding

covariance matrices, then we can write the following equations which define them.

~0 = E{(r-Po)(r--po)T/~IO},

where, superscript T denotes the transpose operation.

For our detection problem, a ml~ is represented by the signal pulse vector s and a "0~ is represented by

no pulse or an all-zero vector. Hence,

p0 ~- O,

~ = ~. (~.2~)
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With the above definitions, we can write the following equations for the joint density functions of the N

components of r under the two hypotheses as given below [14]. These joint density functions completely

specify the statistics of r.

1
exp{-- ~ (r--s) r ~’1-1 (r--s)}p(r/~l) = (27r)N/2 [1/2

’

1 rT ~ -11
exp{-- ~ 0 r} (5.26)-- ’

where ].] denotes the determinant of the matr~ within the vertical bars.

Now we are in a position ~ write an expre~ion for optimal detection scheme. Using Bayes criterion,

the optimM detector, i.e., the detection scheme with smallest probability of error, can be written ~ [5]

P(r/ l) 
r e (5.27)<

where, P(M0) and P (M~) are a pr io ri probabilities of h ypotheses ~0 and ~1 r espectively. In t he

absence of any information about the hypotheses, both these a priori probabilities are taken to be equal,

in which case the RHS of the above inequality would equal 1.

In words, what the above inequality says is that when the LHS of the inequality is greater than the

RHS, we decide that r came from MI’ i.e. we detect a ml". Similarly, when the LHS is less than the RHS

we detect a "0". It can be easily shown that this scheme does indeed yield the lowest probability of error

[5]. The term /(r) is Called the likelihood ratio and is the basic quantity in hypothesis testing.

Sometimes it is convenient to use the logarithm of the likelihood ratio instead of the likehood ratio

itself. Then the decision rule becomes

P( o)
hCr)=ln{/(r)} > In [ ] =H -* rE ¯ C5.28)

The RHS of Eq. (5.28), represented by H, is called the threshold of the detector. If the h(r) is greater

than H, we detect a "1"; and vice-versa. Using Eq. (5.26) we can write the log-likelihood ratio as

1 I ol
rT ~ --1 1 (,_,)T ~1-1 (r--,) (5.29)h(r) ~ ~ln ~ + 2 o r - .

57



For a given detection problem, 270, 271 and s are known. Hence, if we are given a particular readback

voltage vector r, we can decide whether it is a =1u or a u0" by first computing h(r) using Eq. (5.29),

and then using the decision strategy of Eq. (5.28).

The probability of error that results when the above decision strategy is used obviously depends on So’

Z71 and s. We analyze the following two cases in an attempt to find an analytical expression for this

error probability.

5.3.1. The Equal Covarlance Matrix Case

We first consider the simple case when the covariance matrices under the two hypotheses are equal, i.e.,

Z~0 ~---Z~1 ~---Z2. This is true when modulation noise is absent. Even though it is not a realistic case

study when we have modulation noise, the results we derive here will be used for later comparison

studies. In this case the Iog-likellhood ratio ratio reduces to

(5.30)

Since h(r) is produced by a linear transformation on r in Eq. (5.30), it is also a Gaussian random

variable. Let 70 and 71 denote the mean values of h(r) under the two hypotheses, and a02 and a12 denote

the corresponding variances of h(r). Then, we can write the following equations for these quantities.

I sT -1

Now, since h is Gaussian, we can write the probability density functions of h under the two hypotheses

in terms of only means and variances as

(5.32)
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I{ we now consider the detection strategy specified by Eq.(5.28), there are two ways in which we can

make an error. The first is when r actually belongs to M0 and the log-likelihood ratio h is greater than

H. The probability of this type of error is represented by %. The second type of error is when r belongs

to ~(1 and h is less H. The probability of this type of error is represented by 1. Hence, we can write t he

following equations for e0 and e1.

9 = v(h/;t~) dh.O0

These error probabilities can be written more explicitly as

f/~ I (h+t/)2,
e0 ~--- ~ exp(--.~--~" ) dh

(5.33)

I (t/÷H)
---~ - -- erf(-- }, (5.34)2

where eft{.} is defined by

j~OZy21
exp(-- ~’) dyerf(~) 

and erf(-x) -- err (x), z E[- -o o,oo] . (5.35)

Similarly

eI -.~ 1 -- p(h/Ml) 

[

1 exp(-- (h--t/)2)
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f(H--
y21 exp(-- ) dv

1= - + err{ ). (5.36)

The total probability of error , ~, can be obtained from eI and ~o as

(5.37)

We see that in the equal covariance matrix case the calculation of error probabilities is a fairly simple

task. The optimal detection scheme in this case consists of computing a linear transformation of the

readback voltage, as given by Eq. (5.30) and comparing the resulting quantity with a threshold. The

continuous time equivalent of this strategy would involve passing the readback voltage through a linear

system and comparing the output of the linear system at a specific time instant with a prespecifie~

threshold. This linear system is called a matched filter and is discussed in great detail in communication

theory literature [19]. We now consider the more interesting case when the covariance matrices are not

equal.

5.3.2. The Unequal Covarlance Matrix Case

In the detection problem of interest, when the noise is signal dependent, the covariance matrices of r

under the two hypotheses are unequal. In this case the log-likelihood ratio cannot be reduced to a linear

transformation of r as we did in the equal covariance matrix case. Hence, h(r) is no longer Gaussian,

and finding the probability density function of h under the two hypotheses is a much more difficult

problem. We first simplify the detection problem a little in the following way.

Since r has a normal distribution, we can always find a linear transformation which diagonalizes both

covariance matrices, ~0 and ,U1, simultaneously. Such a transformation matrix, A, is one which contains

the eigen-vectors of ~0-1 ~1 as its rows [5]. If we pass the random vector r through this transformation,

the random vector that we obtain at the output, y, has components which are independent random

variables under both hypotheses.

y = A (5.3s)

The mean vectors and covariance matrices of ¥ under the two hypotheses can be shown to be [5]
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~1~o) ~ ~" o ~ o,

E{yl~l} -= A ,, -= d,

Cov(y/~0} = A ~0 Ar = ~,

Cov{y/~} = ~ ~ Ar = A, (~.so)

where A is an NxN diagonal matr~ contMning the e~gen-values, kl,...,k ~ of ~0-1 ~z along its

diagonal.

The log-likelih~d ratio, in this c~e, h~ the form

1 1
~(~) = _ ~ ~ {1~1 } + ~ { ~r~ _ (~_a)r~-~ (~-d) C~.~o)

It is e~ily shown5 that the expre~ions for the log-likelih~d ratio in Eq. (5.29) and Eq. (5.40) 

equivMeat. This means that the transformation, A, preserves the optimMity of the detection scheme of

Eq. (~.2~).

By diagon~izing both the cov~i~ce mstric~ of T, we ensure that the N r~dom v~riab]es, yl,...,y~

which constitute y, are independent. Hence,

N

p(y/~,) ]7~’(y~l~), ~ =0,1.

If we define the log-likelihood of the l-th component of y as

~(~/~1)
h(y~) -~- In

~’(~/~o) 

then

N

h(y) = ~ h(~).

(5.41)

(5.42)

(5.43)
l----~l

Our goal is to first calculate p(h/Mo) and p(h/~ll) , from the density functions of the h(yl) s; and then,

use these to calculate the total probability of error, e. There are two approaches to this problem. The

first involves a rigorous, exact calculation of e; and the second is an approximate calculation of e which

is valid for large N.

5See the Appendix section at the end of this chapter
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5.4. Exact Calculation of Error Probability

Here we use a characteristic function approach to find the desired density functions of h. The

characteristic function of a random variables , x, is defined by

5=(~) -~ E{ exp(~x)} (5.44)

For y E Mi ’ i-~0,1, the characteristic functions of h(y), ~i(~) are defined 

~bi(m) = /~{ exp(~h(y) )/~i} (5.45)

Similarly, the characteristic functions of h(yt) for y E ~/i ’ are given by

~,(o~) = E{ exp(~h(~,) )/~t;). (5.4~)

From Eqs. (5.43), (5.45) and (5.46), 

N

From Eq. (5.47) we get the following two equations for the absolute value and argument of ~bi(w)

N

(5.48)

Hence, if we can find the absolute values and arguments of ¢il(W), we can use these to obtain the

characteristic functions of h under the two hypotheses.

From Eq. (5.39), we see that each of the components, Yl’ of ¥ is a Gaussian random variable with, mean

0 and variance 1, under M0; and with, mean dt and variance )~l’ under MI" Hence,

2

P(~/~0) = ~ e,~p(-- ~
~2~

1 (~-d~)2
p(yl/~l) ~--- exp(-- ~). (5.49)

2X~

6We have used the symbol ~ to represent fl~ earlier on in this chapter.
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Substituting the above density function in Eq. (5.42), we get

(5.50)

Proceeding from Eq. (5.50), we can show that7 the absolute value and argument of ~il(w), i .~- 1,2, are

given by

1 bll2w2

(l+w2a,~2)1/4 exp [ 2(l+w2ail2) ,

1 1 ailbil2w2

1.q-to2 a il2
(5.51)

where

b ol2

hot = l_a0---- + ln (5.52)

and

all ~ X1 -- 1,

bll -~- x/l/2dl,

b ll2

hll
~- 1+alI ÷ ln~l. (5.53)

Hence, using Eqs. (5.51) and (5.48), we can compute the characteristic functions of h under both 

hypotheses. Our goal is to make use of these characteristic functions to determine the total probability

of error, e. The procedure is as follows.

7See the Appendix section at the end of this chapter for details.
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From the characteristic functions, ~bi(w), we can compute the density functions p(h/~i) 

Also, from Eq. (5.33) we know that

~l = p(h/Ml) dh (5.55)

where

P(Mo)
H = In p (M1---~. (5.56)

Using a familiar rule of the Fourier transforms we get,

Now, 4~i(w) has an even real part and an odd imaginary part. Hence, the integrand on the R.H.S of Eq.

(5.57) has a real even part and an odd imaginary part. Therefore

f~¢i(~)
.--:-- exp(-£~/-/) /o ]2 Re .---:--- exp(-~H) dw

~ I¢;(~)1
= 2~0 --~ sin{Z¢i(~)- wH}dw. (5.58)

Also, from Eq. (5.45), we get that ~bi(0) = 1 . Hence, Eq. (5.57) reduces 

/_~ ~ ~ fo~ I~;(~)1
p(h/Mi) dh ..... sin { Z~i(w) -- wH } dw . (5.59)

oo 2 ~r w

8See the Appendix section at the end of this chapter for a derivation of this result.
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Substituting Eq. (5.59) in the two equations of Eq. (5.69), we get the following analytical expressions 

e0 and e1.

(5.60)

1 1 c= I i( )1
el ~--- 2 ~]0 ~w sin{ Z~bl(W)-wH}dw.

(5.61)

In any practical ease the above indefinite integrals have to carried out numerically. Fortunately, the

integrals are 1-dimensional and hence the integration is manageable. Beeanse the integrals are indefinite

there are two factors which determine the accuracy of the result; the sampling interval and the total

length of integration. For small error probabilities, the accuracy required in the computation of the

integrals may be so high that it is not practical to go through the process. In such eases we may have to

depend on an approximate calculation which is less tedious.

5.5. Approximate Calculation of Error Probability

In Eq. (5.43) we saw that the 10g-likelihood ratio of h(y) can be written in terms of the log-likelihood

ratios h(yl) of the components of y as

N

h(y) 

In this method we make the following approximation.

for sufficiently large n, h(y) is approximately Normally distributed, i.e.

Ganssian density functions. To recall, we defined the log-likelihood ratio as

Using the Central Limit Theorem, we claim that,

p(h/No) and p(h/N1) are

1 1
h(~) = --ln{Ial} + { rry-(¥-d)TA -1 (y-d) (5.63)

In order to compute the error probabilities we need to know the means and variances of h under the two

hypotheses. If Yo and r/1 denote the means of h under the two hypotheses, and 0"02 and a12 denote the

corresponding variances, then we can show that ~ these are given by

9See the Appendix section at the end of this chapter for details.
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1 1 1 dTA_1
n0 -- - ~ln(Ial) + ~ tr{I - -x) -~ d. (5.64)

’1 "~- 2 ln{[A[} + ~ tr{A - I} + 12 dT d. (5.65)

1
dT A-2ao2 = ~ tr{(I -- A-l) 2} A- d (5.66)

1
trl2 = ~tr{(A-I) 2} A- dTAd, (5.67)

where tr{.} denotes the trace of a matrix.

With the Gaussian assumption, we can write the probability density functions of h under the two

hypotheses in terms of the means and variances defined above as

The probabilities of error under the two hypotheses, eI and e0 can hence be calculated in the same lines

as we did in the equal covariance matrix case.

/H
°

1 eft{ H--t/°
~o -- ~(~/~0) ~h = ~ % },

?

1 H-,~
eI ~--- p(h/~tl) dh = -~ er f{-- }. (5.69)

oo tr1

The Gaussian approximation that we made in the beginning of this section requires two conditions to be

correct. The first is that the component random variables in Eq. (5.62) must closely resemble each other

and the second is that N must be fairly large. The first condition is not met when the covariance

matrices are very different from Toeplitz. If the contribution of the modulation noise is significant, ,U1 is

going to be very different from Toeplitz as Eq. (5.23) indicates. Hence, we might get misleading error

probabilities using this method even when N is large. In the next section we discuss one way of

obtaining an upper bound on the error probability which may prove to be a better method of estimating

error probabilities when the modulation noise is large.



5.6. Upper Bounds on Error Probab|l|ty : The Chernoff Bound

It is evident from the discussion in the last two sections that calculating error probabilities in the

unequal covariance matrix case is, in general, a difficult task. Even when the observation vectors have a

Ganssian distribution, we must resort to numerical integration of some form. The approximate

calculation described above is one way to get around the problem. Another way is to seek an easily

computable expression for an upper bound on the error probability, because in many practical cases the

upper hound is all the information we need.

One such set of upper bounds on the error probabilities e0, ~1 and ~ are the Chernoff Bounds [5] which

can be represented by the inequalities

e0 < [ P (~1) ]1/2 exp[ -/~( 
-- P (~/0) j ~ ) ]’

1
e ~_ [ P(N1) P(~(0) j11s exp[ -~(~) ] , (5.70)

1
where p( ~ ) is the Bhattacharya [3] distance between the two hypotheses, defined by

It can be shown that [5] the Chernoff bound is very close to the exact error probability when the error

probabilities are very small, but could be very different from the exact value when the error

probabilities are large. This fact is very useful because, as we shall see in the last section of this chapter,

numerical computations of the exact probabilities are much simpler and more accurate for large error

probabilities, and we would not have to use the bound anyway.

5.7. Linear Detection Schemes

From Eq. (5.29) we can see that the log-likelihood ratio h(r) for the optimal detection scheme 

obtained from r by a quadratic transformation of r. This means that if we implement the optimal

detection scheme by passing the readback voltage through a filter to obtain the log-likelihood ratio, the

filter that would have to be used would be a quadratic, i.e., non-linear, filter. Implementing a non-linear

filter is, in general, not an easy task. In this section we shall approximate the log-likelihood ratio by a
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linear function of r, and find the coefficients of the linear transformation vector which

error probability when this detection scheme is used. We write h(r) 

minimize the

h(r) ------ V7r + ~o, (5.72)

where V is column vector of size N, and v0 is a constant.

The decision strategy that we use now is

> 0 --~ r~ (5.73)h(r) = Vr~ + ~0 ¯

Since r is normally distributed, h(r) as defined above is also normally distributed. Hence, in order 

obtain the probability density functions of h under the two hypotheses, we need to calculate only the

means and variances of h under the two hypotheses. These are given by

70 = E{h(r)/N 0} = VTE{r/~0} + v0 = v0’

~1 = E{h(r)/~ 1} = VTE{r/M 1} % v 0 = vTs % v0,

a02 = VTE{rr~}v = V~0v,

~2 = Vr E{ (,-.)(,_~)T } V r ~ V. (S. ~4)

It is e~ily shown that the ~tM probability of error that result, when the decision strate~ of Eq. (5.73)

is used, is given by

h2
~_: ~

h2
exp( -- ~- ) dh ÷ P (HI) 1/al 1 exp( -- ) dh (5.75)

Our goal is to find the coefficients of the linear transformation that minimize the above probability of

error. Hence, we differentiate e with respect to V and vo and set the resulting quantities to zero.

2 2
0~./:~(~1 ) 1 exp( 71 ~ 71 1 exp( 70 c9 70.....

2
71 s~ exp(- )[-

)1/2
P()/I) V~ ~ (V 1V
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and

7o2

2~r02

2
exp(- 71

~--~ ) 

1
P(M0) 

exp(- ) __ Zo 
2a02 o’02

2

2
1 ~1 1

Using Nq.

7O2

2a02 )

(5.7~)

(5.77)

70 71

¢ro2 o.12

[71 ~/os -- ~ - ~Z:o]V.
o.l~ 0"02

(5.78)

Also, rewriting Eq. (5.77) we get

(5.79)

Solving Eqs. (5.78) and (5.79) yields V and 0 which minimize t he probability o f e rror e . Unfortunately,

an explicit solution to the above equations is very difficult to obtain, and hence we need to use an

iterative procedure to find the solution.

A simple iterative solution to this set of equations was first suggested by Peterson [15]. Instead of

solving Eqs. (5.78) and (5.79) directly, the minimum of e is sought under the conditions of Eq. (5.78) 

follows.
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(5.so)

where

1 "12 "02

a ~12 ~02

and

(5.81)

Now, since "o ----- Vo and "1 ~ VTs + Vo’ and (~ 0.02 ~11 ~c (1-~) ~12 ~}o = fr om Eq. (5.82), v ocanbe

calculated as

From Eq. (5.83) we can see that if V is multiplied by a, 0 i s also s caled by t he same factor a . T he

> 0. Hence, ~ isdecision made by VTr + v0 X 0 is the same as the decision made by a VTr ÷ a v0 <

invariant under the scale change. Therefore, by ignoring the scale factor of a, we can plot e as a function

of one parameter c~ as follows.

¯ Calculate V for a given a with a -~ 1.

¯ Using this V, calculate %2, o.12, vTs and v0.

¯ Calculate ~ using Eq. (5.75).

¯ Change c~ from 0 to 1 continuously.

From this plot, we can find cz for which e is minimum. We then use this value of a to calculate V and

v0 for the linear detection with minimum probability of error.

5.7.1. Correlation Detector

A special class of the linear detection schemes is the Correlation detector.

V and v0 which are given by

The correlation detector has

v =., (5.84)

7O



P( o)1 sT s - In ~.

-- - P

The detection strategy that results from the above choice is

P( 0) 
sT r > In- + 8r8 --* r E~ ¯ (5.86)

< P( I) u0

The LHS of the above inequality is the dot product, or the correlation, of the readback voltage vector

with signal pulse vector. This is the reason for calling this detector a correlation detector. The

correlation detector is very easy to implement, and is very commonly used in scenarios when the noise is

stationary and white because it can be shown to be optimM in this case [11].

5.8. 1Nonparametric Detection Schemes : The Sign Detector

All the detectors that we have considered so far assume that we know probability density functions of r

under the two hypotheses. If the actual probability density functions of r are the same as those assumed

in determining the detection scheme, the performance of the detector in terms of error probability is

good. If, however, the actual probability density functions are considerably different from those

assumed, the performance of the parametric detector may be severely degraded.

Nonparametric detectors do not assume that the input probability density functions are completely

known, but only make general assumptions about the input such as symmetry of the probability density

function and continiuity of the cumulative distribution function. Since there are a large number of

density functions which satisfy these assumptions, the density functions of the input may vary over a

very wide range without altering the performance of the nonparametric detector. Of course, the

performance of the nonparametric methods will be inferior to the parametric optimal detection schemes

when the statistics are completely characterized.

We shall consider one such nonparametric detection scheme in this chapter, namely, the sign detector

[6]. The sign detector utilizes only the polarity of the data to make its decision. We assume that the

signal takes on positive values, i.e., all the components of s are positive. We have seen earlier that in

digital magnetic recording the signal pulse is either a positive going pulse or a negative going pulse.

Since we assume that the sign of the pulse is known before hand, the analysis that we do for positive

pulses can be easily repeated with minor modifications for negative going pulses as well. We also make
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the assumption that the input data vector r has components which are statistically independent. With

this assumption we can write the probability density functions of r under the two hypotheses as

N

N

(5.87)

Since we are only interested in the signs of rl, we do not need the entire density functions of rl under the

two hypotheses. All we need are the probabilities that rl is positive ( or negative ) under the two

hypotheses.

Under hypothesis ~0’ since we have only noise which is zero mean, each of the rl s is equally likely to be

positive or negative, i.e.,

1P{r, > 0/); 0} = I - P{r, < 0/~0} -- ~.

Under hypothesis )~1’ each of the rls is more likely to be positive than negative, i.e.,

1
P{r, >_ 0/N1 ) ---~ 1 - P{r, < 0/)~1 } ~ vl > ~" (5.89)

To recall, the decision strategy that yields the minimum error probability can be written in terms of a

likelihood ratio and a threshold as

~(’) = P(r/~0) < P (~,) ~ e (5.90)

Using Eq. (5.87) we can express the likelihood ratio l(r) in term of the likelihood ratios of r,, = 1,...,N,

From Eqs. (5.88) and (5.89) we can write l(r,) 

2p/ for r l > 0
~(q) - (5

2 (1 -- Pl) for r~ < 0
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For a particular observation vector r, let L+ denote the set of values of I for which rl is positive and L

denote the set of values of I for which rt is negative. Then we can rewrite Eq. (5.91) 

ICr) = II 2 p/, TT 2 (1--Pl) (5.93)
L+ L_

Hence, the decision strategy to be adopted is

II { 2 } II { (i - } > r e . (5.94)<
L+ L_

Even though the above decision strategy looks fairly simple, error analysis for this detector is not easy.

Gibson and Melsa [6] have obtained an analytical expression for the error probability when the

components of r are identically distributed, i.e., all the Pl s are equal. This condition is very far from

true in our detection problem, since the signal has much larger values at the center of a bit period thah

at the extremities. Hence, we would have to either simulate the detection problem on the computer or

conduct an experiment on real data, to find the bit error rates when the sign detector is used.

Since our goal in this project is to obtain conservative estimates of the probability of detection of an

erased digital signal, we will not pursue this sign detector any more. Rather, we will concentrate on the

performance of optimal detection schemes.

5.9. Numerical Evaluation of Error Probabilities

5.9.1. Case Studies Considered

In order to evaluate the error probabilities for the various detection schemes that we discussed in this

chapter numerically, we need to assign specific values to the various dimensionless quantities that we

defined in the first section of this chapter. These are : the normalized transition width parameter p, the

level of erasure q, the normalized bandwidth fl and noise-to-signal ratio r I of the modulation noise, and

the normalized bandwidth f0 and the noise-to-signal ratio r0. of the background noise. Another

parameter that can be varied is the type of erasure, i.e., a.c. or d.c. In general, all the above parameters

could be varied to form different combinations which could represent various recording systems. Here,

we shall only consider a few case studies which we consider to be fairly representative.

In all our case studies we shall assume that
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p ~ 0.2,

fl ~ 0.1,

f0 = 1 .o. (5.95)

These values have been chosen to correspond to the experimental data that we obtained in Chapter 4,

for a bit period of 0.5 p-sec as shown in Fig. 4-2(a). We can easily see that for T----- 0.5 p-sec, the

transition width parameter, pT would be 0.1 p-sec, the modulation noise bandwidth would be 200 kHz,

and the background noise bandwidth would be 30 lVlHz, which is approximately what these values are

for the data in Chapter 4.

To study the dependence of the bit error rate on the level of erasure, we shall vary q from 1 to 10"4, i.e.,

vary the signal power from the unerased level down to -80 dB, in conveniently chosen steps. Note that

when the signal level is reduced I~y erasure, the modulation noise is also reduced correspondingly, but

the background noise remains unchanged.

The four case studies we shall consider are :

¯ a.c. erasure, low modulation noise ( 0 ~--- 1 0"2, rI -~- 10.4 )

¯ a.c. erasure, high modulation noise ( 0 -~ 10"2, r1 ~10-2 )

¯ d.c. erasure, low modulation noise ( 0 ~--- 1 0"2, r 1 ~- 10-4 )

¯ d.c. erasure, high modulation noise ( 0 ~10"2, r 1-~-10-2)

The values of r0 and r I in case studies 1 and 3 correspond closely to the values that we would have

obtained for the autocorrelation functions described in Fig. 4-5. These values indicate that modulation

noise level is about 20 dB below the background noise level, and hence cases I and 3 will be referred to

as low modulation noise cases. For the sake of comparison, we also consider cases when the modulation

and background noise are of the same level. These are represented in case studies 2 and 4, which we

shall refer to as high modulation noise cases.
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5.9.2. Soi~tware Developed for ~qumer|cal C~omputatlon

Using the analytical expressions we developed in this chapter, we have written Fortran programs to

numerically evaluate the error probabilities when the three detection schemes, namely, the optimal, the

best linear and the correlator, are used for detection. For the optimal detection scheme, we calculated

the error probability in the three ways discussed: Of all these programs, the one that does an exact

calculation of the error probability for the optimal detector is the most tedious since it involves the

numerical integration of two indefinite integrals. We used Weddle’s Rule [4] to compute these integrals.

For most of the matrix operations, we used IMSL

routines. Except for the program which calculates the exact error probability for the optimal detection

scheme which took about 40 minutes of CPU time, all the other programs took about 1.5 to 2.0 minutes

of CPU time to generate one value of the error probability on a VAX-11/750 processor. The resulting

error probabilities for these detection schemes, for all four case studies, have been listed as a function of

the level of erasure in Tables 5-1 to 5-8.

As we mentioned earlier, an exact calculation of the error probability for the optimal detector involves

the evaluation of two indefinite integrals ( see Eqs. (5.60) and (5.{}1)). For small error probabilities,

each of these integrals is going to differ from 0.5 by only a small amount. Hence, if the error

probability is of the order of 10"~, we need to have at least n decimal places of accuracy in the integral

to get a reasonable result. We have used double precision arithmetic which provides 16 decimal places of

accuracy in the computation of the integral. Hence, however fine a sampling interval we use for the

integration and however long we choose our integration length, we cannot calculate error probabilities

which are smaller than 10"Is.

5.0.3. Results of Numerleal Evaluation of Error Probabilities

Tables 5-1 to 5-4 show values of the the error probability for the optimal detection scheme in three

different ways. The Chernoff bound is in the form of an exponential and hence the exponent can be

calculated even when the error probabilities are very small ( lff 347, as Table 5-1 shows ). The smallest

value that the approximate calculation can yield is determined by the smallest value that is allowed by

the double precision arithmetic, which is ~ 10"3s. When the modulation noise level is high, as in Tables

5-2 and 5-4, the approximate calculation can be so inaccurate that it yields an error probability which is

greater than the upper bound. In such cases we have marked the value of error probability obtained by

an asterisk.
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Tables 5-5 to 5-8 list values of the error probability for the two linear detection schemes that w¢ have

considered, namely, the best linear detector and the correlator. We can see that the best linear detection

scheme yields smaller values of error probability than the Chernoff bound in most cases. Since the

optimal detector will perform better than even the best linear detector, when an exact calculation of

error probability for the optimal detector is not possible, the linear detector results can be used as a

better upper bound than the Chernoff bound.

Tables 5-9 to 5-12 have been listed to compare the performance of the three detection schemes at erasure

levels for which an exact calculation of error probabilities of the optimal detector is possible. We can

observe the following trends :

1. In all tables the probability of error increases with increasing levels of erasure. Since we have assumed

that the two hypotheses are equally likely, the largest value that the error probability can take is 0.5,

and this happens when the signal information is not used in making the decision, i.e., whether a bit is a

"1" or a "0= is decided completely randomly. We see that this indeed is the case, i.e., the error

probability in all tables approaches 0.5 at high levels of erasure.

2. At a given level of erasure, the error probabilities for all three detection schemes are, in general,

larger under conditions of d.c. erasure than under conditions of s.c. erasure. This is to be expected since

d.c erasure introduces an additional modulation noise term around zero frequency.

3. The optimal detector performs better than the best linear detector, which in turn performs better

than the correlator, in terms of minimum probability of error at low levels of erasure, but all of them

perform equally well at high levels of erasure. As we mentioned earlier ( See Eq. (5.23)), high levels 

erasure cause the covariance matrices under the two hypotheses to be equal to each other. The optimal

detector for the equal covariance matrix case is a linear detector. Hence, the best linear detector

performs just as well as the quadratic optimal detector at high levels of erasure. Also, since we have

assumed that the background noise is band-limited white noise in our analysis, the correlator, which is

optimal for white noise, performs almost as well as the linear detector at high levels of erasure.

4. For a fixed r 0 { 10-2 ), changing I f rom 10-4 t o 10"2 does not i ncrease the error p robability v ery

significantly at erasure levels greater than 20 dB. This is again because of the fact that the modulation

noise is suppressed when the signal is erased whereas the background noise is unaffected.



K.9.4. Probability of Retrieving Sequences of Bits

So far we have considered only bit error rates. Let us denote the probability of bit error by P~. From

we can find the probability of correctly retrieving a bit Pd’ as

1 - (5.08)

Now, information is stored on the disc as a sequence of bits. This sequence could be encoded by RLL

( run length limited ) encoding and by error correcting coding, Hence, in general, the probability 

correctly detecting a sequence of bits depends not only on Pd’ but also on the specific encoding schemes

used. As an illustrative example of how one can obtain probabilities of estimating sequences correctly,

let us consider the probability of detecting a =byte= ( ~--- 8 bits ) of information when no encoding 

used. In order to correctly detect a byte, we need to correctly detect each of the 8 bits. Hence,

Probability of correctly detecting a byte ~-~ [ Pd ]a (5.97)

For example, at the highest level of erasure ( 80 dB ), the bit error rate is approximately 0.498 for all

case studies, i.e.,

P~ ~- 0.498 and therefore Pd -~ 0.502 .

Probability of correctly detecting a byte ~ (0.502)8 ~-- 4.03 X 10"3.

We note that the probability of correctly detecting a byte is two orders of magnitude smaller than Pd in

this case. If we go to longer sequences the probability of correct detection will be even smaller, though

this value can be increased by the use of error correcting codes.

5.10. Appendix

~.10.1, Proof of the equivalence of Eq. (5.29) and Eq. (6.40)

Starting with Eq. (5.40} we get,

1 1
/=(y) = - ~ In {I.al} + ~ { yTy _ (y_d)TA-1 (y-d) (5.98)

Now, since A is a diagonal matrix that contains the eigenvalues of 2~0-1 2~1 as its diagonal elements, we

get
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Also, from Eq. (5.38) and Eq. (5.39), we 

and

(y -- d) r A-1 (y - d) = (At - r A-1(At - As

Substituting Eqs. (5.99), (5.100) and (5.101) in Eq. (5.98), yields 

5.10.2. Derivation of Eq. (5.51)

Starting from Eq. (5.50), we derive Eq. (5.51) as follows 

I 1 (Yl--d/)2
h(~)=-~+~{~2

~ }.
Now, Eq. (5.46) can be written 

(5.100)

(5.101)

(5.102)

¢~(~) = ~ e~(/~h(~) ~(~=/~) ~=

From Eq.. (5.102) and Eq. (5.103), we 

where

2

1 b0l2w2 3~ox [
(~-~o~)~/~ ~(1-~=0~)

(5.104)
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1
aOl --- l --

dt
bol -~-

b ol2

hot In X1 .

The absolute value and argument of ~0t(w) can then be calculated 

Similarly,

(5.1o6)

(yt-dt)2

} dyt

where

1 bl/2°~2 £~o
exp[ 2 hit]"

(1-.iwal/) l 2(1--~al/)

all ~ )~l -- 1,

bit ~- ktl/2dt,

bll2

hl/ -~- l+al/ + Ink/.

The absolute value and argument of ~bl/(w) can be calculated as

d/2

2Xl

(5.107)

(5.108)
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1 1 a,lbll2w2

l÷w2al/~

We can combine Eq. (5.106) and Eq. (5.109), to get Eq. (5.51).

(~.1o~)

5.10.3. Derivation of Eq. (5.57)

Starting from Eq. (5.54), we get

oo
dh- ~bi(~ ) exp(--~,~h) dw.

= -- ~bi(w ) exp(--~,~h) dh

From a table of Fourier transforms, we get

(5.110)

exp(-.~h) dh -~- exp(-.~H) [ ~" ~w) -I- -- ] .

Substituting Eq. (5.111) in Eq. (5.110) we 

(~.111)

fff ~i(°) ~. f_~ ~(~)
o~ P(h/Ui) dh ~-- ~ + -~ oo "-~ exp(--3D/-/) dw

~,~o) I L~
.--’:’-" exp(--~H) dw 

5.X0.4. Derivation of Eqs.

We begin by first establishing some simple equalities shown below.

N N

E{yTy/~O} = ~ E{Y~2/~0}
l-----1

= ~ I = tr{~}.

(5.112)

(5.113)
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tr{I).

N N N

1=1 /-----1 m----l, m ~ l

E{(yT 21-1 y)2/.,~O}

2tr{I} + [tr{I}]2.

N N N

1---1 l=l re=l, m ~ l

N N N

= 3 ~ X1-2 + E ~ X1-1 kin-1
l~--1 1-----1 re=l, m ~ l

= 2tr{A -2} + [tr{A-1 }]2.

E{(yT y) (yT 21-1 y)/~0} E{Ym2yl2km-1 / N0}

(5.114)

(5.115)

(5.116)

(5.117)

(5.118)

(5.119)

Also, we know that because Yt s are Gaussian random variables, all third moments are zero. Therefore

E{(yTy) y/M0} -~- O,

E{(Y T y) yT/M
O} -~- 0T.

Similarly

E{[ (y-d) T (y-d) ]2/~1} ----- 2 tr{A 2} +

E{ [ (y-d) T A-1 (y-d) ]2/N, } -----

(5.120)

(5.121)

[ tr{A} ]o., (5.122)

2 tr{I} + [ tr{I} ]2, (5.123)
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.~’{(y--d) T (y--d) (y--d)/N1} ~-- 

E{(y-d) T (y-d) (y--d)T/.~} T̄

(5.124)

(5.125)

(5.126)

Using Eqs. (5.113) to (5.126) we can compute E{h/Mo), E{h/Ml}, V~r{h/~0} and Vat{h/M1} a~ follows.

1 1 1
-- =~ E{yT A-1

1
+ E{y TA-ld/MO} -- ~dA-Id

1 1 1
lln{]Ai} ÷ tr{[} - tr{A -1} - -dTA-I d=-~ ~ ~ 2
1 1 1

~----~ In {IA]} + ~ tr{I - A-1} - -2 dTA-1 d .
(5.127.)

(5.128)

Var{~/~0}
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1 1
----- ~[2tr(I}+tr(I} 2] ÷ ~[2tr(A-2 }÷tr(A-1}2]

1
÷ dTA-~d - ~[2tr(A}+tr(I}tr(A-1 }]

1
]2

1
÷ ~[tr(I-A -I} -- tr{I-A -1} [~tr{I-A-I}]

1 dT A-2= ~ tr{(I - A-l)~} + d

Var{h/~a}
1 1 1

= E{[ ~ (y-d)T(y-d) + (y-d)Td - 2~Y-d)TA-l(y-d) - 

1
~--- ~ E{[ (y-d) T (y-d) ]2/~1} E{dT (y -d) (y T d/,~l }

1 1
+ ~ E{[ (y-d)TA -1 (y-d) ]2/M1} + ~ [ tr{A -- I}]2

+ E{(y--d) T (y-d) (y-d) T d/~}

-- E{(y-d) TA-1 (y--d) (y-d) T d/Nl}

1
-- ~ E{(y--d) T (y-d) (y-d)r A-~ (y-d)/~l}

1 T 1
-- tr{A-I} [ E{ ~y-d) (y-d) ÷ (¥--d)Td (y- d)TA-l(y-d)/~l} ]

1 1
---- ~[2tr{A 2} ÷(tr{A}) 2] + ~[2tr{I} +(tr{I})2]

1
+ dTAd - ~[2tr{A}+tr{A}tr{I}]

1 1 1
]2-- tr{A--I} [~tr{A}-~tr{I}] + ~[tr{A-I}

1
= ~tr{(A-I) ~} + dr Ad. (5.13o)

If we denote E(h/.~o} , E{h/.N1), Var{h/Mo} and Vat{h/N1} by 70, ~11’ %2, and a12 respectively we can

rewrite Eqs. (5.127) to (5.130) 

1 1 1 dTA_~ d.
(5.131)r~ 0 = -~In{lAl} + ~tr{I-A -1} - ~
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1 1
1_ dTd

~7~ ~ -~ln{IAl} + ~tr{A-I} + 2 "

1
%2 = ~tr{CI-A-1) 2} + drA -2d

These results are used in Chapter 5 to analyze the various bit detection schemes.

(5.132)

(5.133)

(5.134)
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Level of

erasure

Probability of bit error

Chernoff Approximate Exact
bound calculation calculation

0 10-347 ~ 10- 38 ---

-2.5 lff227 < 10"3s ---

-6.0 10"114 ~ 10"38

-12.0 7.0661 X 10-32 1.7235 X 10-32

-20.0 4.4066 X 10-7 7.0203 :~ 10-7 {}.9444 X 10-7

-22.5 7.0777 ~ 10-4 1.4{}07 X 10-4 1.4{}01 ~ 10-4

-26.0 2.6970 X 10"2 7.8343 ~ 10-3 7.8342 ~ 10-3

-32.0 0.24081 0.11338 0.11334

-40,0 0.44483 0.31441 0.31440

-60.0 0.49943 0.48205 0.48205

-80.0 0.499994 0.49828 0.49828

Table 5-1: Optimal detection, a.c. erasure, Low modulation level (r 0 ~--- 10"2, r1 lO-4 )
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Level of

er ure (dB)

Probability of bit error

Chernoff Approximate Exact
bound calculation calculation

0 2.5414 X 10-12 1.1359 X lff 7 * ---

-2.5 5.2029 X 10"12 1.2765 X lff 7 * ---

-6.0 2.1059 X 10-11 1.7533 X 10-7 *

-12.0 2.6865 × lff9 7.5309 ~K 10-7 * 7.8964 X 10"12

-20.0 1.6278 X 10-4 1.1919 X lff4 2.4194 X 10-5

-22.5 2.6665 X 10-3 8.7449 X 10-4 5.7445 >( 10-4

-26.0 3.6262 ~ 10-2 1.1185 X 10-2 1.0191 X 10-2

-32.0 0.24569 0.11657 0.11659

-40.0 0.44506 0.31472 0.31472

-60.0 0.49947 0.48072 0.48071

-80.0 0.49994 0.49820 0.49820

Table 8-2: Optimal detection, a.c. erasure, High modulation level (r 0 -~- 10"2, r1 lO-2 )
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Level of

erasure (dB)

Probability of bit error

Chernoff Approximate Exact
bound calculation calculation

0 10-343 ~ lff3s

-2.5 10-223 ~ 10-38

-6.0 10-112 ~ 10-38

-12.0 4.0379 X 10-31 3.9188 X lff32

-20.0 6.1710 X 10"° 9.2907 X 10-7 8.2775 X 10-7

-22.5 8.5996 X 10-4 1.8227 X 10-4 1.7785 X 10-4

-26.0 2.9479 ~ 10-2 9.6126 ~ 10-3 8.6484 ~ 10-3

-32.0 0.24636 O. 12386 O. 11689

-40.0 0.44648 0.31944 0.31702

-60.0 0.49943 0.48122 0.48100

-80.0 0.499994 0.49821 0.49810

Table Optimal detection, d.c. erasure, Low modulation level (r 0 ~ 10"2, r1 ~ 10-4 )
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Level of

erasure (dB)

Probability of bit error

Chernoff Approximate Exact
bound calculation calculation

0 9.8698 X 10"12 1.7514 X 10-7 * ---

-2.5 2.9405 )~ 10-11 2.6323 × 10-7 * ---

-6.0 3.9133 X 10-10 5.1615 X 10-7 * ---

-12.0 1.0858 X life 6.9187 × lif t} * 3.8334 × 10-8

-20.0 1.5532 X lff2 3.7953 )< 10-3 2.5685 X 10-3

-22.5 6.4021 X 10-2 1.5229 X 10-2 1.47280 X 10-2

-26.0 0.19418 5.2718 )< 10-2 5.2480 X 10-2

-32.0 0.39316 0.21586 0.21584

-40.0 0.48112 0.37728 0.37726

-60.0 0.49981 0.48781 0.48780

-80.0 0.499998 0.49878 0.49878

Table 5-4: Optimal detection, d.c. erasure, High modulation level (r 0 -~- 10-2, r1 10-2 )
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Level of

erasure (dB)

Probability of bit error

Best Linear Gorrelator

0 < 10-38 < 10-38

-2.5 < 10-38 < 10-38

-6.0 < 10-38 < 10-38

-12.0 6.5450 X 10-33 1.7589 X 10-32

-20.0 7.0279 X 10-7 7.0476 >( 10-7

-22.5 1.4610 >( 10-4 1.4635 X 10-4

-26.0 7.8342 X 10-3 7.8407 >( 10-3

-32.0 0.11337 0.11340

-40.0 0.31434 0.31436

-60.0 0.48071 0.48072

-80.0 0.49807 0.49807

Table ~-5: Linear detection, a.c. erasure, Low modulation level (r 0 -~- 10-2, rI ~--- 10"4 )
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Level of

erasure

Probability of bit error

Best Linear Correlator

0 4.0671 X 10-2o 1.3657 X lff7

-2.5 6.4937 X 10.l° 1.5210 X lff7

-6.0 1.3445 X 10"18 2.0498 X 10.7

-12.0 8.9862 X 10"12 8.3364 X 10.7

-20.0 2.5211 X 10-5 1.2197 X lff4

-22.5 5.7613 X 10-4 8.8454 X 10-4

-26.0 1.0917 X 10.2 1.1228 )~ 10-2

-32.0 0.11661 0.11664

-40.0 0.31473 0.31475

-60.0 0.48071 0.48071

-80.0 0.49807 0.49807

Table 5-6~ Linear detection, a.c. erasure, High modulation level (r 0 -~- 10"2, r 1 ~ lff 2 )
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Level of

erasure (dB)

Probability of bit error

Best Linear Correlator

0 ~ 10.38 ~ lff38

-2.5 ~ 10.38 ~ 10-38

-6.0 ~ 10.38 ~ 10.38

-12.0 5.6489 X 10-32 6.1655 X 10.32

-20.0 9.9{}20 X 10.7 1.0033 X 10.6

-22.5 1.7986 X 10.4 1.8063 X 10.4

-26.0 8.6687 X 10.3 8.6867 X 10.3

-32.0 0.11707 0.11714

-40.0 0.31709 0.31714

-60.0 0.48102 0.48103

-80.0 0.49810 0.49810

Table 5-7: Linear detection, d.c. erasure, Low modulation level (r 0 ~ 10.2, r1 ~--- 10.4 )
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Level of

erasure

Probability of bit error

Best Linear Correlator

0 1.8388 X 10"17 1.4656 X 10-7

-2.5 8.1583 X 10"16 1.6005 X 10-7

-6.0 5.1764 X 10"13 3.1346 X 10-7

-12.0 8.3227 X 10-8 9.8230 X 10-6

-20.0 4.2084 X 10-3 1.1268 X 10-2

-22.5 2.1392 X 10-2 4.1303 X 10-2

-26.0 8.4699 X 10-2 0.12181

-32.0 0.24421 0.27981

-40.0 0.39080 0.40801

-60.0 0.48896 0.49074

-80.0 0.49889 0.49907

Table 5-8: Linear detection, d.c. erasure, High modulation level (% -~- 10-2, r I ~ 10-2 )
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Level of

erasure (dB)

Probability of bit error

Optimal (exact) Best Linear Correlator

-20.0 6.9444 X 10.7 7.0279 X lff7 7.0476 X 10-7

-22.5 1.4601 X 10.4 1.4610 × 10.4 1.4635 X 10-4

-26.0 7.8342 X 10-3 7.8342 × 10-3 7.8407 × lff3

-32.0 0.11334 0.11337 0.11340

-40.0 0.31440 0.31434 0.31436

-60.0 0.48205 0.48071 0.48072

-80.0 0.49828 0.49807 0.49807

Table ~-9: Low modulation level ( 0 =10-2, r1 -~- 10-4 ), a.c. erasure

Level of

erasure (dB)

Probability of bit error

Optimal (exact} Best Linear Correlator

-12.0 7.8964 X lff12 8.9862 X 10"12 8.3364 X 10-7

-20.0 2.4194 X lff5 2.5211 X lff5 1.2197 X 10-4

-22.5 5.7445 X 10.4 5.7613 X 10.4 8.8454 X 10.4

-26.0 1.0191 X 10.2 1.0917 X 10.2 1.1228 X 10-2

-32.0 0.11659 0.11661 0.11664

-40.0 0.31472 0.31473 0.31475

-60.0 0.48071 0.48071 0.48071

-80.0 0.49820 0.49807 0.49807

Table ~;-10: High modulation level ( 0 ---~ 10-2, r1 10.2 ), a.c. erasure
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Level of

erasure (dB)

Probability of bit error

Optimal (exact) Best Linear Correlator

-20.0

-22.5

-26.0

-32.0

-40.0

-60.0

-80.0

8.2775 X 10.7

1.7785 )~ 10-4

8.6484 X 10-3

0.11689

0.31702

0.48100

0,49810

9.9620 X 10.7

1.7986 X 10-4

8.6687 X lff3

0.11707

0.31709

0.48102

0.49810

1.0033 X 10-6

1.8063 X 10.4

8.6867 X 10.3

0.11714

0.31714

0.48103

0.49810

Table 5-11." Low modulation level ( 0 10.4 ), d.c. erasure

Level of

erasure (dB)

Probability of bit error

Optimal (exact) Best Linear Correlator

-12.0 3.8334 X lff8 8.3227 X 10-8 9.8230X lifo

-20.0 2.5685 X lff3 4.2084 X 10-3 1.1268 X lff2

-22.5 1.47280 X 10.2 2.1392 X 10-2 4.1303 X 10-2

-26.0 5.2480 X 10.2 8.4699 X 10-2 0.12181

-32.0 0.21584 0.24421 0.27981

-40.0 0.37726 0.39080 0.40801

-60.0 0.48780 0.48896 0.49074

-80.0 0.49878 0.49889 0.49907

Table 5-12: High modulation level ( 0 ~10.2,ri = 10-2 ), d.c. erasure
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Chapter 6

Conclusions and Discussion

6.1. Summary and Conclusions

In Chapter 2, we showed that the Lorentzian pulse model for the signal was a reasonable approximation.

Then, in Chapter 3, we derived an expression for the average power spectrum of the noise from

particulate recording media. We showed that the average power spectrum of the noise essentially

exhibits a background noise term which is independent of the signal, and a modulation noise term which

depends on the signal. Most importantly, we showed that even though the noise power depends on the

writing frequency, the signal-to-noise ratio is independent of the signal frequency.

In terms of modeling, the most significant contribution made in the thesis was the time-domain model

for particulate media noise. This model allows us to obtain the two-dimensional autocorrelation function

of media noise from simple spectrum analyzer measurements. This method for obtaining the

autocorrelation function of the media noise is better than the method of time averages suggested by

Tang [16] in two ways. Firstly, time averages are much more complicated than spectrum analyzer

measurements and are prone to timing errors. Secondly, using the autocorrelation functions Rn0(r) and

R (r) defined in Chapter 4, we can determine the two-dimensional noise autocorrelation function for
n1

any general signal written on the disc.

From the results of the numerical evaluation of error probabilities for the detection schemes in Chapter

5, we observed that bit error rates for d.c. erased signals are marginally higher than those for a.c.

erased signals. This might lead one to suppose that d.c. erasure is a more effective way to ensure the

security of information written on the disc. But it has been shown that d.c. fields induce significantly

smaller erasure than a.c. fields of the same amplitude [10]. Hence, in most practical cases using a.c.

fields for erasure would be a better choice than d.c. fields.

In Chapter 5, we also saw that modulation noise does not play a significant role at high levels of
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erasure. This means that for the specific problem of interest, namely, recovering information from

erased discs, we could have used a simple band-limited white background noise model to represent the

noise. But this fact should not diminish the utility of the noise model that we developed in Chapter 4

because in most other applications the signals are not erased.

6.2. Some Comments About Simplifying Assumptions Made in This Thesis

In Chapter 2, we approximated the flux waveform corresponding to an arctangent transition in

magnetization by an arctangent of larger width. This approximation yields the Lorentzian signal pulse

shape. We could perform a more detailed analysis to obtain an exact formulation for the pulse shape.

But we see in Chapter 5 that in designing bit detection schemes the pulse shape was not as critical as

total energy in the pulse. So as long as the Lorentzian model has the correct total energy we do not need

a more sophisticated model.

In Chapter 4, we made the assumption that media noise is Gaussian. This simplified all the ensuing

analysis in Chapters 4 and 5. Even though this assumption has a strong basis, we could pursue all the

analysis that we did in these chapters without making the Ganssian assumption because it is possible to

obtain the N-th order statistics of the noise from simple particle interaction models [2]. We do not

expect that the resulting error probability estimates will be significantly different.

In designing the detection schemes discussed in Chapter 5, we made the implicit assumption that the

sign of the pulse is known to the detector; otherwise, under hypothesis HI the expected value of the

readback voltage vector r would be two valued. The justification for making this assumption is that

positive and negative pulses occur alternately in a readback signal; and, hence, the choice of the sign of

the pulse in the bit period of detection would be based on sign of the previous pulse. This procedure

would result in propagation of errors when a sequence of bits is being detected. There are two ways of

getting around this problem. One is to find a suitable encoding scheme for writing the bits on the disc

which will limit the extent to which errors are allowed to propagate. The second is to redesign the

detection scheme to accommodate the two-valued nature of E{r/~l}.

In Chapter 5, we modeled the background noise by a bandlimited white noise term with a narrow

bandwidth compared to the background noise. We could improve this model by considering the

modulation noise to be the sum of a very narrow band noise term which represents noise due to surface

asperities, and a narrow band noise term which represents the noise due to particle clustering.
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6.3. Suggestions for Future Work

We did not compare the performance of the conventional peak detection scheme with the schemes

discussed in this report. Since the peak detection scheme is ad hoc, the only way to compare its

performance with these schemes is by computer simulation or experimentation on real data. These

simulations and experimentation can also be used to validate the results that we obtained by numerical

evaluation.

Another issue that we have not addressed in this thesis is the effect of RLL ( run length limited ) coding

and error correcting coding on the bit error rates and sequence error rates. These are important when we

consider high density recording.

One simple way to estimate the sequence of bits that is stored on the disc is to put together the

individual bit estimates that we obtain from bit detection schemes. Unfortunately this is not optimum

when we have intersymbol interference. High density magnetic recording channels suffer from very high

levels of intersymbol interference [12]. Hence, we need to consider other more sophisticated sequence

estimation techniques.

A recent paper by Duel-Hallen and Heegard [7] discusses the application of a new signal processing

algorithm for sequence estimation in the presence of high intersymbol interference, called Delayed

Decision Feedback Sequence Estimation ( DDFSE ), in digital magnetic recording channels. The noise

model that is used in the analysis of this paper is the standard additive white Gaussian noise ( AWGN 

model. This analysis could be made much more accurate by using the nonstationary noise model that we

proposed in this thesis, and it opens an area for prospective future work in this field.
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